Câu hỏi:
01/02/2024 51Cho hình vẽ
Biết rằng a // b và \(2{\widehat {\rm{Q}}_2} - {\widehat {\rm{P}}_1} = 12^\circ .\) Số đo của \({\widehat {\rm{Q}}_2}\) là:
A. 61°;
B. 62°;
C. 63°;
D. 64°.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: D
Ta có a // b nên \({\widehat P_1} = {\widehat Q_1}\) (hai góc so le trong)
Mà \({\widehat Q_1} + {\widehat {\rm{Q}}_2} = 180^\circ \) (hai góc kề bù)
Suy ra \[{\widehat {\rm{Q}}_2} = 180^\circ - {\widehat Q_1}\]
Ta lại có: \(2{\widehat {\rm{Q}}_2} - {\widehat {\rm{P}}_1} = 12^\circ \)
Suy ra \(2\left( {180^\circ - {{\widehat Q}_1}} \right) - {\widehat Q_1} = 12^\circ \)
Hay \(360^\circ - 2{\widehat Q_1} - {\widehat Q_1} = 12^\circ \)
Do đó \(3{\widehat Q_1} = 348^\circ \)
Suy ra \({\widehat Q_1} = \frac{{348^\circ }}{3} = 116^\circ \)
Khi đó \[{\widehat {\rm{Q}}_2} = 180^\circ - {\widehat Q_1} = 180^\circ - 116^\circ = 64^\circ .\]
Vậy ta chọn phương án D.
Hướng dẫn giải
Đáp án đúng là: D
Ta có a // b nên \({\widehat P_1} = {\widehat Q_1}\) (hai góc so le trong)
Mà \({\widehat Q_1} + {\widehat {\rm{Q}}_2} = 180^\circ \) (hai góc kề bù)
Suy ra \[{\widehat {\rm{Q}}_2} = 180^\circ - {\widehat Q_1}\]
Ta lại có: \(2{\widehat {\rm{Q}}_2} - {\widehat {\rm{P}}_1} = 12^\circ \)
Suy ra \(2\left( {180^\circ - {{\widehat Q}_1}} \right) - {\widehat Q_1} = 12^\circ \)
Hay \(360^\circ - 2{\widehat Q_1} - {\widehat Q_1} = 12^\circ \)
Do đó \(3{\widehat Q_1} = 348^\circ \)
Suy ra \({\widehat Q_1} = \frac{{348^\circ }}{3} = 116^\circ \)
Khi đó \[{\widehat {\rm{Q}}_2} = 180^\circ - {\widehat Q_1} = 180^\circ - 116^\circ = 64^\circ .\]
Vậy ta chọn phương án D.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình vẽ
Biết rằng MN // BC. Số đó của \(\widehat {{\rm{ABC}}}\) là: