Cho hình thang cân ABCD có AB // CD, DB là tia phân giác của góc D, DB ⊥ BC. Biết AB = 4 cm. Tính chu vi hình thang đó
197
20/12/2023
Bài 14 trang 74 SBT Toán 8 Tập 1: Cho hình thang cân ABCD có AB // CD, DB là tia phân giác của góc D, DB ⊥ BC. Biết AB = 4 cm. Tính chu vi hình thang đó.
Trả lời
Ta có: AB // CD nên (hai góc so le trong).
DB là tia phân giác của góc D (giả thiết) nên .
Do đó .
Suy ra ∆ABD cân tại A, suy ra AB = AD = 4 cm.
Mà ABCD là hình thang cân, nên BC = AD = 4 cm.
Gọi M là giao điểm của AD và BC.
Xét ∆MDC có DB là tia phân giác của góc D và DB cũng là đường cao hạ từ đỉnh D nên ∆MDC là tam giác cân, do đó DM = DC.
Mặt khác: ∆MDC có (do ABCD là hình thang cân) nên ∆MDC cân tại M, do đó DM = CM.
Suy ra DM = DC = CM = 2BC = 2.4 = 8 cm.
Vậy chu vi hình thang là:
AB + BC + CD + DA = 4 + 4 + 8 + 4 = 20 cm.
Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 4: Hình bình hành – Hình thoi
Bài 5: Hình chữ nhật – Hình vuông
Bài tập cuối chương 3 trang 72
Bài 1: Thu thập và phân loại dữ liệu
Bài 2: Lựa chọn dạng biểu đồ để biểu diễn dữ liệu
Bài 3: Phân tích dữ liệu