Cho hình thang ABCD có hai đáy là AB và CD với CD =1/2 AB . Gọi I là giao điểm của hai đường chéo AC

Bài 6 trang 36 Chuyên đề Toán 11: Cho hình thang ABCD có hai đáy là AB và CD với CD=12AB. Gọi I là giao điểm của hai đường chéo AC và BD. Tìm phép vị tự biến AB thành CD.

 

Trả lời

 

Bài 6 trang 36 Chuyên đề học tập Toán 11 Chân trời sáng tạo

Vì ABCD là hình thang nên AB // CD

Ta có I là giao điểm của hai đường chéo AC và BD, áp dụng hệ quả định lí Thales, ta được ICIA=IBID=CDAB=12.

Suy ra IC=12IA.

Mà A, C nằm khác phía so với I.

Do đó IC=12IA.

Vì vậy VI,12A=C.

Chứng minh tương tự, ta được VI,12B=D.

Khi đó qua phép vị tự VI,12 biến AB thành CD.

Vậy phép vị tự cần tìm là VI,12.

Xem thêm các bài giải Chuyên đề Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Bài 4: Phép đối xứng tâm

Bài 5: Phép quay

Bài 6: Phép vị tự

Bài 7: Phép đồng dạng

Bài tập cuối chuyên đề 1

Bài 1: Đồ thị

Câu hỏi cùng chủ đề

Xem tất cả