Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi M và

Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a, tâm O. Gọi MN lần lượt là trung điểm của hai cạnh SABC, biết MN=a62 . Khi đó giá trị sin của góc giữa đường thẳng MN và mặt phẳng SBD  bằng

A.  25

B.  33
C.  55
D.  3

Trả lời

Media VietJack

Gọi I hình chiếu của M lên ABCD , suy ra I là trung điểm của AO.

Khi đó CI=34AC=3a24 .

Xét ΔCNI  CN=a2,NCI^=45° .

Áp dụng định lý cosin ta có:

NI=CN2+CI22CN.CI.cos45°=a24+9a282.a2.3a24.22=a104

Xét ΔMIN  vuông tại I nên

MI=MN2NI2=3a225a28=a144

MI // SO, MI=12SOSO=a142 .

Chọn hệ trục tọa độ Oxyz như hình vẽ:

Ta có O0;0;0, B0;22;0, D0;22;0, C22;0;0, N24;24;0 ,

A22;0;0, S0;0;142, M24;0;144

Khi đó MN=22;24;144, SB=0;22;142, SD=0;22;142 .

Vecto pháp tuyến mặt phẳng SBD : n=12SB;SD=7;0;0 .

Suy ra sinMN,SBD=MN.nMN.n=7.227.62=33 .

Chọn B.

Câu hỏi cùng chủ đề

Xem tất cả