Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD
227
07/06/2023
Bài 4.19 trang 87 Toán 11 Tập 1: Cho hình chóp S.ABCD có đáy là hình thang (AB // CD). Gọi E là một điểm nằm giữa S và A. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng AB, AD. Xác định giao tuyến của (P) và các mặt bên của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Trả lời
+) Mặt phẳng (SAB) chứa đường thẳng AB song song với mặt phẳng (P) nên mặt phẳng (SAB) cắt mặt phẳng (P) theo giao tuyến song song với AB. Vẽ EF // AB (F thuộc SB) thì EF là giao tuyến của (P) và (SAB).
+) Mặt phẳng (SAD) chứa đường thẳng AD song song với mặt phẳng (P) nên mặt phẳng (SAD) cắt mặt phẳng (P) theo giao tuyến song song với AD. Vẽ EG // AD (G thuộc SD) thì EG là giao tuyến của (P) và (SAD).
+) Trong mặt phẳng (SCD), qua G vẽ đường thẳng song song với CD cắt SC tại H.
Ta có: GH // CD và CD // AB nên GH // AB, do đó GH nằm trong mặt phẳng (P).
Vì G thuộc SD nên G thuộc mặt phẳng (SCD) và H thuộc SC nên H thuộc mặt phẳng (SCD), do đó GH nằm trong mặt phẳng (SCD).
Vậy GH là giao tuyến của (P) và (SCD).
+) Nối H với F, ta có H thuộc SC nên H thuộc mặt phẳng (SBC). Vì F thuộc SB nên F thuộc mặt phẳng (SBC). Do đó, HF nằm trong mặt phẳng (SBC).
Lại có H và F đều thuộc (P) nên HF nằm trong mặt phẳng (P).
Vậy HF là giao tuyến của (P) và (SBC).
+) Ta có: EF // AB và GH // AB nên EF // GH, do vậy tứ giác EFHG là hình thang.
Xem thêm các bài giải SGK Toán 11 Kết nối tri thức hay, chi tiết khác:
Bài 10: Đường thẳng và mặt phẳng trong không gian
Bài 11: Hai đường thẳng song song
Bài 12: Đường thẳng và mặt phẳng song song
Bài 13: Hai mặt phẳng song song
Bài 14: Phép chiếu song song
Bài tập cuối chương 4