Cho hình chóp tứ giác S.ABCD và E là một điểm bất kì thuộc cạnh SA. Gọi (P) là mặt phẳng
503
09/09/2023
Bài 4.25 trang 63 SBT Toán 11 Tập 1: Cho hình chóp tứ giác S.ABCD và E là một điểm bất kì thuộc cạnh SA. Gọi (P) là mặt phẳng qua E và song song với hai đường thẳng SB, SD. Gọi M, N lần lượt là giao điểm của (P) và các cạnh AB, AD.
a) Chứng minh rằng EM//SB và EN//SD.
b) Giả sử đường thẳng MN cắt các đường thẳng BC, CD. Xác định giao tuyến của mặt phẳng (P) và các mặt phẳng (SBC), (SCD).
Trả lời
a) Mặt phẳng (SAB) chứa đường thẳng SB song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng đó song song với SB, suy ra EM//SB.
Mặt phẳng (SAD) có đường thẳng SD song song với mặt phẳng (P) nên giao tuyến của hai mặt phẳng đó song song với SD, suy ra EN//SD
b) Gọi F, G lần lượt là giao điểm của đường thẳng MN và hai đường thẳng BC, CD. Trong mặt phẳng (SBC), vẽ đường thẳng qua F song song với SB thì đường thẳng đó là giao tuyến của mặt phẳng (P) và mặt phẳng (SBC).
Trong mặt phẳng (SCD), vẽ đường thẳng qua G và song song với SD thì đường thẳng đó là giao tuyến của mặt phẳng (P) và mặt phẳng (SCD).
Xem thêm các bài giải SBT Toán lớp 11 Kết nối tri thức hay, chi tiết khác:
Bài 10: Đường thẳng và mặt phẳng trong không gian
Bài 11: Hai đường thẳng song song
Bài 12: Đường thẳng và mặt phẳng song song
Bài 13: Hai mặt phẳng song song
Bài 14: Phép chiếu song song
Bài tập cuối chương 4