Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD
258
13/12/2023
Bài 2 trang 65 SBT Toán 8 Tập 1: Cho hình bình hành ABCD. Gọi H và K lần lượt là chân đường cao hạ từ A và C đến BD.
a) Chứng minh rằng tứ giác AHCK là hình bình hành.
b) Gọi M là giao điểm của AK và BC, N là giao điểm của CH và AD. Chứng minh AN = CM.
c) Gọi O là trung điểm của HK. Chứng minh M, O, N thẳng hàng.
Trả lời
a) Do ABCD là hình bình hành nên AB // CD
Suy ra (hai góc so le trong) hay .
Xét ∆AHB vuông tại H và ∆CKD vuông tại K, ta có:
AB = CD (do ABCD là hình bình hành); (chứng minh trên).
Suy ra ∆AHB = ∆CKD (cạnh huyền – góc nhọn)
Do đó AH = CK (hai cạnh tương ứng)
Ta có: AH ⊥ BD, CK ⊥ BD suy ra AH // CK.
Tứ giác AHCK có: AH // CK, AH = CK nên là hình bình hành.
b) Vì AHCK là hình bình hành nên AK // CH, hay AM // CN. (1)
Hơn nữa, ABCD là hình bình hành và N ∈AD, M ∈ BC nên AN // CM. (2)
Từ (1) và (2) suy ra ANCM là hình bình hành.
Vậy AN = CM.
c) Tứ giác AHCK là hình bình hành có hai đường chéo AC, HK cắt nhau tại trung điểm
O của HK nên O cũng là trung điểm của AC.
Tứ giác ANCM là hình bình hành có hai đường chéo AC, NM cắt nhau tại trung điểm
O của AC nên O cũng là trung điểm của MN.
Vậy M, O, N thẳng hàng.
Xem thêm các bài giải sách bài tập Toán 8 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Tứ giác
Bài 3: Hình thang – Hình thang cân
Bài 4: Hình bình hành – Hình thoi
Bài 5: Hình chữ nhật – Hình vuông
Bài tập cuối chương 3 trang 72
Bài 1: Thu thập và phân loại dữ liệu