Câu hỏi:
19/01/2024 64Cho hệ bất phương trình: \[\left\{ \begin{array}{l}2x + 3y + 6 \ge 0\\x \le 0\\2x - 3y + 1 \ge 0\end{array} \right..\] Khẳng định nào sau đây là sai?
A. Miền nghiệm của hệ bất phương trình là miền tam giác ABC với A(0; –2), \(B\left( {0;\frac{1}{3}} \right),\) \(C\left( { - \frac{7}{4}; - \frac{5}{6}} \right);\)
B. Đường thằng y = –1 có hai giao điểm với miền nghiệm của hệ bất phương trình;
C. Miền nghiệm của hệ bất phương trình chứa gốc toạ độ;
D. Miền nghiệm của hệ bất phương trình là miền kể cả bờ 2x – 3y + 1 = 0.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
• Xét điểm O(0; 0) ta có: \[\left\{ \begin{array}{l}2.0 + 3.0 + 6 = 6 \ge 0\\0 \le 0\\2.0 - 3.0 + 1 = 1 \ge 0\end{array} \right.\]
Nên cặp số (0; 0) thỏa mãn đồng thời cả ba bất phương trình của hệ.
Do đó miền nghiệm của hệ chứa gốc tọa độ O. Khi đó C là khẳng định đúng.
• Hệ bất phương trình \[\left\{ \begin{array}{l}2x + 3y + 6 \ge 0\\x \le 0\\2x - 3y + 1 \ge 0\end{array} \right.\] có miền nghiệm kể cả bờ 2x – 3y + 1 = 0.
Do đó D là khẳng định đúng.
• Biểu diễn miền nghiệm của hệ bất phương trình:
Miền nghiệm của bất phương trình 2x + 3y + 6 ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: 2x + 3y + 6 = 0) chứa điểm O(0; 0).
Miền nghiệm của bất phương trình x ≤ 0 là nửa mặt phẳng (kể cả đường thẳng d2: x = 0) chứa điểm (–1; 0).
Miền nghiệm của bất phương trình 2x – 3y + 1 ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: 2x – 3y + 1 = 0) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Miền nghiệm là miền tam giác ABC với A(0; –2), \(B\left( {0;\frac{1}{3}} \right),\) \(C\left( { - \frac{7}{4}; - \frac{5}{6}} \right).\) Khi đó A là khẳng định đúng.
Vẽ đường thẳng y = –1 ta thấy đường thẳng y = –1 cắt cạnh AC tại D và cắt cạnh AB tại E và cắt miền trong tam giác ABC tại vô số điểm F. Do đó đường thẳng y = –1 cắt miền tam giác ABC tại vô số điểm.
Khi đó B là khẳng định sai.
Vậy ta chọn phương án B.
Hướng dẫn giải
Đáp án đúng là: C
• Xét điểm O(0; 0) ta có: \[\left\{ \begin{array}{l}2.0 + 3.0 + 6 = 6 \ge 0\\0 \le 0\\2.0 - 3.0 + 1 = 1 \ge 0\end{array} \right.\]
Nên cặp số (0; 0) thỏa mãn đồng thời cả ba bất phương trình của hệ.
Do đó miền nghiệm của hệ chứa gốc tọa độ O. Khi đó C là khẳng định đúng.
• Hệ bất phương trình \[\left\{ \begin{array}{l}2x + 3y + 6 \ge 0\\x \le 0\\2x - 3y + 1 \ge 0\end{array} \right.\] có miền nghiệm kể cả bờ 2x – 3y + 1 = 0.
Do đó D là khẳng định đúng.
• Biểu diễn miền nghiệm của hệ bất phương trình:
Miền nghiệm của bất phương trình 2x + 3y + 6 ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d1: 2x + 3y + 6 = 0) chứa điểm O(0; 0).
Miền nghiệm của bất phương trình x ≤ 0 là nửa mặt phẳng (kể cả đường thẳng d2: x = 0) chứa điểm (–1; 0).
Miền nghiệm của bất phương trình 2x – 3y + 1 ≥ 0 là nửa mặt phẳng (kể cả đường thẳng d3: 2x – 3y + 1 = 0) chứa điểm O(0; 0).
Miền không gạch chéo (kể cả bờ d1, d2, d3) là giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
Miền nghiệm là miền tam giác ABC với A(0; –2), \(B\left( {0;\frac{1}{3}} \right),\) \(C\left( { - \frac{7}{4}; - \frac{5}{6}} \right).\) Khi đó A là khẳng định đúng.
Vẽ đường thẳng y = –1 ta thấy đường thẳng y = –1 cắt cạnh AC tại D và cắt cạnh AB tại E và cắt miền trong tam giác ABC tại vô số điểm F. Do đó đường thẳng y = –1 cắt miền tam giác ABC tại vô số điểm.
Khi đó B là khẳng định sai.
Vậy ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho hệ bất phương trình \[\left\{ \begin{array}{l}x - 2y < 0\\x + 3y > - 2\end{array} \right.\] và các điểm A(–1; 0), B(1; 0), C(–3; 4) và D(0; 3). Miền nghiệm của hệ bất phương trình chứa bao nhiêu điểm trong bốn điểm trên?
Câu 3:
Cho hệ bất phương trình \(\left\{ \begin{array}{l}x - 2y < 0\\m{x^2} + 3y > 0\\2x - \left( {{m^2} - m} \right){y^2} \le 0\end{array} \right.\) (với m là tham số). Giá trị m để hệ bất phương trình đó là hệ bất phương trình bậc nhất hai ẩn x và y là:
Câu 4:
Cho hệ bất phương trình: \(\left\{ \begin{array}{l}x + y - 2 \ge 0\\x - 3y + 3 < 0\end{array} \right..\) Chọn khẳng định đúng:
Câu 5:
Cho các đường thẳng d1: 3x – 4y + 12 = 0, d2: x + y – 5 = 0 và d3: x + 1 = 0.
Miền không gạch chéo (kể cả bờ d1, d2, d3) trong hình vẽ bên dưới là miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình dưới đây?
Cho các đường thẳng d1: 3x – 4y + 12 = 0, d2: x + y – 5 = 0 và d3: x + 1 = 0.
Miền không gạch chéo (kể cả bờ d1, d2, d3) trong hình vẽ bên dưới là miền nghiệm của hệ bất phương trình nào trong các hệ bất phương trình dưới đây?
Câu 6:
Cho hệ bất phương trình \(\left\{ \begin{array}{l}3x + 2y < 1\,\,\,\,\,\,\,\,\left( 1 \right)\\x + \frac{2}{3}y < 1\,\,\,\,\left( 2 \right)\end{array} \right..\) Gọi S1 là miền nghiệm của bất phương trình (1), S2 là miền nghiệm của bất phương trình (2).
Cho các phát biểu sau:
(I) Miền nghiệm của hệ bất phương trình là S1;
(II) Miền nghiệm của hệ bất phương trình là S2;
(III) Hai bất phương trình của hệ có cùng miền nghiệm.
Số phát biểu đúng là: