Câu hỏi:
01/04/2024 29
Cho hàm số \(y = f(x) - {\cos ^2}x\) với \[f\left( x \right)\] là hàm liên tục trên \(\mathbb{R}\). Trong bốn biểu thức dưới đây, biểu thức nào xác định hàm \[f\left( x \right)\] thỏa mãn \[y' = 1\] với mọi \(x \in \mathbb{R}\)?
A. \[x + \frac{1}{2}\cos 2x\].
B. \(x - \frac{1}{2}\cos 2x\).
C. \[x - \sin 2x\].
D. \[x + \;\sin 2x\].
Trả lời:
Hướng dẫn giải:
Chọn A.
Ta có: \(y' = f'\left( x \right) - 2.\cos x.\left( { - \sin x} \right) = f'\left( x \right) + 2.\cos x.\sin x = f'\left( x \right) + \sin 2x\)
\( \Rightarrow y' = 1 \Leftrightarrow f'\left( x \right) + \sin 2x = 1 \Leftrightarrow f'\left( x \right) = 1 - \sin 2x \Leftrightarrow f\left( x \right) = x + \frac{1}{2}\cos 2x\)
Hướng dẫn giải:
Chọn A.
Ta có: \(y' = f'\left( x \right) - 2.\cos x.\left( { - \sin x} \right) = f'\left( x \right) + 2.\cos x.\sin x = f'\left( x \right) + \sin 2x\)
\( \Rightarrow y' = 1 \Leftrightarrow f'\left( x \right) + \sin 2x = 1 \Leftrightarrow f'\left( x \right) = 1 - \sin 2x \Leftrightarrow f\left( x \right) = x + \frac{1}{2}\cos 2x\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Câu 4:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Câu 5:
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Câu 6:
Đạo hàm của hàm số \(y = - \frac{2}{{\tan \left( {1 - 2x} \right)}}\) bằng:
Câu 7:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Câu 8:
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Câu 9:
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Câu 14:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 15:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)