Câu hỏi:
03/04/2024 37Cho hàm số \(f(x) = \left\{ {\begin{array}{*{20}{c}}{3x + 1\,\,\,\,\,\,\,\,khi\,x \ne 1}\\{2x + 2a\,\,\,\,khi\,x = 1}\end{array}} \right.\). Giá trị của a để hàm số f(x) liên tục trên ℝ là
A. −2
B. 1
C. −1
D. 2
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có f(1) = 2 + 2a;
\(\mathop {\lim }\limits_{x \to 1} (3x + 1) = 3.1 + 1 = 4\).
Để f(x) liên tục trên ℝ Û f(1) = \[\mathop {\lim }\limits_{x \to 1} f(x)\]Û 2 + 2a = 4 Þ a = 1.
Hướng dẫn giải
Đáp án đúng là: B
Ta có f(1) = 2 + 2a;
\(\mathop {\lim }\limits_{x \to 1} (3x + 1) = 3.1 + 1 = 4\).
Để f(x) liên tục trên ℝ Û f(1) = \[\mathop {\lim }\limits_{x \to 1} f(x)\]Û 2 + 2a = 4 Þ a = 1.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Đẳng thức đúng là
Câu 2:
Gọi G là trọng tâm của tam giác ABC. Tính khoảng cách từ điểm G đến mặt phẳng (SAC), biết góc tạo bởi (SAC) và mặt phẳng (ABC) bằng 60°.
Câu 3:
B = \(\mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}}\).
Câu 5:
Tính đạo hàm của hàm số y = \(\frac{{x + 1}}{{x - 2}}.\) Kết quả là
Câu 6:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a. Biết SB vuông góc với mặt đáy, P là trung điểm của cạnh AC.
Chứng minh rằng AC ^ (SBP).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a. Biết SB vuông góc với mặt đáy, P là trung điểm của cạnh AC.
Chứng minh rằng AC ^ (SBP).
Câu 12:
Cho hình chóp S.ABC có SA ^ (ABC).
Góc giữa đường thẳng SC và mặt phẳng (ABC) là
Cho hình chóp S.ABC có SA ^ (ABC).
Góc giữa đường thẳng SC và mặt phẳng (ABC) là
Câu 13:
Cho hàm số y = f(x) = x2 – 2x + 4 có đồ thị (C)
Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(3; 7)
Cho hàm số y = f(x) = x2 – 2x + 4 có đồ thị (C)
Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(3; 7)
Câu 15:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA = SC, SB = SD. Khẳng định nào sau đây là đúng?