Câu hỏi:
03/04/2024 46Cho hai hàm số f(x), g(x) thỏa mãn \(\mathop {\lim }\limits_{x \to 1} f(x)\)= −6 và \(\mathop {\lim }\limits_{x \to 1} g(x)\)= 3. Giá trị của \(\mathop {\lim }\limits_{x \to 1} \left[ {f(x) - g(x)} \right]\) bằng:
A. −3
B. −9
C. 9
D. 3
Trả lời:
Hướng dẫn giải
Đáp án đúng là: B
Ta có: \(\mathop {\lim }\limits_{x \to 1} \left[ {f(x) - g(x)} \right] = \mathop {\lim }\limits_{x \to 1} f(x) - \mathop {\lim }\limits_{x \to 1} g(x) = - 6 - 3 = - 9\).
Hướng dẫn giải
Đáp án đúng là: B
Ta có: \(\mathop {\lim }\limits_{x \to 1} \left[ {f(x) - g(x)} \right] = \mathop {\lim }\limits_{x \to 1} f(x) - \mathop {\lim }\limits_{x \to 1} g(x) = - 6 - 3 = - 9\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Giả sử u = u(x), v = v(x) là các hàm số có đạo hàm tại điểm x thuộc khoảng xác định. Đẳng thức đúng là
Câu 2:
Gọi G là trọng tâm của tam giác ABC. Tính khoảng cách từ điểm G đến mặt phẳng (SAC), biết góc tạo bởi (SAC) và mặt phẳng (ABC) bằng 60°.
Câu 3:
B = \(\mathop {\lim }\limits_{x \to 3} \frac{{2 - \sqrt {x + 1} }}{{x - 3}}\).
Câu 5:
Tính đạo hàm của hàm số y = \(\frac{{x + 1}}{{x - 2}}.\) Kết quả là
Câu 6:
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a. Biết SB vuông góc với mặt đáy, P là trung điểm của cạnh AC.
Chứng minh rằng AC ^ (SBP).
Cho hình chóp S.ABC có đáy là tam giác đều cạnh 4a. Biết SB vuông góc với mặt đáy, P là trung điểm của cạnh AC.
Chứng minh rằng AC ^ (SBP).
Câu 12:
Cho hình chóp S.ABC có SA ^ (ABC).
Góc giữa đường thẳng SC và mặt phẳng (ABC) là
Cho hình chóp S.ABC có SA ^ (ABC).
Góc giữa đường thẳng SC và mặt phẳng (ABC) là
Câu 13:
Cho hàm số y = f(x) = x2 – 2x + 4 có đồ thị (C)
Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(3; 7)
Cho hàm số y = f(x) = x2 – 2x + 4 có đồ thị (C)
Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(3; 7)
Câu 15:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O. Biết rằng SA = SC, SB = SD. Khẳng định nào sau đây là đúng?