Câu hỏi:
25/01/2024 90
Cho hàm số bậc hai f(x) = – 2x2 – x + 1. Giá trị lớn nhất của hàm số là
Cho hàm số bậc hai f(x) = – 2x2 – x + 1. Giá trị lớn nhất của hàm số là
A. \( - \frac{1}{4}\);
A. \( - \frac{1}{4}\);
B. \( - \frac{9}{8}\);
B. \( - \frac{9}{8}\);
C. \(\frac{9}{8}\);
C. \(\frac{9}{8}\);
D. Không tồn tại.
D. Không tồn tại.
Trả lời:
Đáp án đúng là: C
Vì hệ số a = – 2 > 0 nên hàm số f(x) đạt giá trị lớn nhất tại đỉnh.
Do đó, giá trị lớn nhất của hàm số chính là tung độ đỉnh của đồ thị hàm số và là
\({y_{max}} = - \frac{\Delta }{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{{\left( { - 1} \right)}^2} - 4 \cdot \left( { - 2} \right) \cdot 1}}{{4 \cdot \left( { - 2} \right)}} = \frac{9}{8}\).
Đáp án đúng là: C
Vì hệ số a = – 2 > 0 nên hàm số f(x) đạt giá trị lớn nhất tại đỉnh.
Do đó, giá trị lớn nhất của hàm số chính là tung độ đỉnh của đồ thị hàm số và là
\({y_{max}} = - \frac{\Delta }{{4a}} = - \frac{{{b^2} - 4ac}}{{4a}} = - \frac{{{{\left( { - 1} \right)}^2} - 4 \cdot \left( { - 2} \right) \cdot 1}}{{4 \cdot \left( { - 2} \right)}} = \frac{9}{8}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; – 1) và B(– 6; 2). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng AB?
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(3; – 1) và B(– 6; 2). Phương trình nào sau đây không phải là phương trình tham số của đường thẳng AB?
Câu 4:
Phương trình đường tròn đường kính AB với A(1; 3) và B(5; – 1) là
Phương trình đường tròn đường kính AB với A(1; 3) và B(5; – 1) là
Câu 5:
Cho đồ thị hàm số bậc hai y = ax2 + bx + c (a ≠ 0) như hình vẽ sau.
Điều kiện của hệ số a của hàm số bậc hai này là
Cho đồ thị hàm số bậc hai y = ax2 + bx + c (a ≠ 0) như hình vẽ sau.
Điều kiện của hệ số a của hàm số bậc hai này là
Câu 6:
Cho hàm số y = f(x) có đồ thị như hình dưới.
Hàm số trên nghịch biến trên khoảng
Cho hàm số y = f(x) có đồ thị như hình dưới.
Hàm số trên nghịch biến trên khoảng
Câu 8:
Cho hàm số dưới dạng bảng như sau:
x
0
1
2
3
4
y
0
1
4
9
16
Giá trị của hàm số y tại x = 1 là
Cho hàm số dưới dạng bảng như sau:
x |
0 |
1 |
2 |
3 |
4 |
y |
0 |
1 |
4 |
9 |
16 |
Giá trị của hàm số y tại x = 1 là
Câu 9:
Viết phương trình tổng quát của đường thẳng đi qua N(1; 1) và vuông góc với đường thẳng 2x + 3y + 7 = 0.
Viết phương trình tổng quát của đường thẳng đi qua N(1; 1) và vuông góc với đường thẳng 2x + 3y + 7 = 0.
Câu 10:
Phương trình tham số của đường thẳng ∆ đi qua điểm A(– 4; 2) và nhận \(\overrightarrow u = \left( {2;\,\, - 5} \right)\) làm vectơ chỉ phương là
Phương trình tham số của đường thẳng ∆ đi qua điểm A(– 4; 2) và nhận \(\overrightarrow u = \left( {2;\,\, - 5} \right)\) làm vectơ chỉ phương là
Câu 11:
Phương trình tổng quát của đường thẳng d đi qua điểm A(1; – 3) và nhận \(\overrightarrow n = \left( { - 2;\,\,7} \right)\) làm vectơ pháp tuyến là
Phương trình tổng quát của đường thẳng d đi qua điểm A(1; – 3) và nhận \(\overrightarrow n = \left( { - 2;\,\,7} \right)\) làm vectơ pháp tuyến là
Câu 12:
Trong mặt phẳng tọa độ, xét hai đường thẳng
∆1: a1x + b1y + c1 = 0; ∆2: a2x + b2y + c2 = 0.
và hệ phương trình: \[\left\{ \begin{array}{l}{a_1}x + {b_1}y + {c_1} = 0\\{a_2}x + {b_2}y + {c_2} = 0\end{array} \right.\] (*).
Khi đó, ∆1 trùng với ∆2 khi và chỉ khi
Trong mặt phẳng tọa độ, xét hai đường thẳng
∆1: a1x + b1y + c1 = 0; ∆2: a2x + b2y + c2 = 0.
và hệ phương trình: \[\left\{ \begin{array}{l}{a_1}x + {b_1}y + {c_1} = 0\\{a_2}x + {b_2}y + {c_2} = 0\end{array} \right.\] (*).
Khi đó, ∆1 trùng với ∆2 khi và chỉ khi
Câu 15:
Cho phương trình \(\sqrt { - {x^2} + 4x - 3} = \sqrt {2m + 3x - {x^2}} \) (1). Để phương trình (1) có nghiệm thì m ∈ [a; b]. Giá trị a2 + b2 bằng
Cho phương trình \(\sqrt { - {x^2} + 4x - 3} = \sqrt {2m + 3x - {x^2}} \) (1). Để phương trình (1) có nghiệm thì m ∈ [a; b]. Giá trị a2 + b2 bằng