Cho E = {x ∈ ℕ | x < 10}, A = {x ∈ E| x là bội của 3}, B = {x ∈ E| x là ước của 6}. Xác định các tập hợp A\B, B\A, CEA, CEB, CE(A∪B), CE(A∩B)
210
12/06/2023
Bài 3 trang 25 Toán lớp 10 Tập 1: Cho E = {x ∈ ℕ | x < 10}, A = {x ∈ E| x là bội của 3}, B = {x ∈ E| x là ước của 6}. Xác định các tập hợp A\B, B\A, CEA, CEB, CE(A∪B), CE(A∩B).
Trả lời
Tập hợp E gồm các số tự nhiên nhỏ hơn 10 nên E = {0; 1; 2; 3; 4; 5; 6; 7; 8; 9}.
Tập hợp A gồm các phần tử thuộc tập E và thỏa mãn là bội của 3 nên A = {0; 3; 6; 9}.
Tập hợp B gồm các phần tử thuộc tập E và thỏa mãn là ước của 6 nên B = {1; 2; 3; 6}.
Khi đó:
Tập hợp A\B là tập các phần tử thuộc tập A nhưng không thuộc tập B nên A \ B = {0; 9}.
Tập hợp B\A là tập các phần tử thuộc tập B nhưng không thuộc tập A nên B\A = {1; 2}.
Vì A là tập con của tập E nên tập hợp CEA là tập phần bù của tập hợp A trong tập E được xác định là CEA = {1; 2; 4; 5; 7; 8}.
Vì B là tập con của tập E nên tập hợp CEB là tập phần bù của tập hợp B trong tập E được xác định là CEB = {0; 4; 5; 7; 8; 9}
Tập hợp A∪B là tập các phần tử thuộc tập hợp A hoặc tập hợp B nên = {0; 1; 2; 3; 6; 9}.
Do A∪B là tập con của tập hợp E nên tập phần bù của tập A∪B trong E được xác định là = {4; 5; 7; 8}.
Tập hợp A∩B là tập các phần tử vừa thuộc tập hợp A vừa thuộc tập hợp B nên = {3; 6}.
Do A∩B là tập con của tập E nên tập phần bù của tập A∩B trong tập E được xác định là = {0; 1; 2; 4; 5; 7; 8; 9}.
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 1: Mệnh đề
Bài 2: Tập hợp
Bài 3: Các phép toán trên tập hợp
Bài tập cuối chương 1
Bài 1: Bất phương trình bậc nhất hai ẩn
Bài 2: Hệ bất phương trình bậc nhất hai ẩn