Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Điểm E thuộc OC, nối AE cắt (O) tại M. a) Chứng minh tứ giác OBME nội tiếp.

Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Điểm E thuộc OC, nối AE cắt (O) tại M.

a) Chứng minh tứ giác OBME nội tiếp.

Trả lời
Cho đường tròn (O) có hai đường kính AB và CD vuông góc với nhau. Điểm E thuộc OC, nối AE cắt (O) tại M. a) Chứng minh tứ giác OBME nội tiếp. (ảnh 1)

Xét đường tròn (O) có AB là đường kính, M thuộc đường tròn

 AMB^=90°EMB^=90°

Do AB vuông góc với CD nên ta có: EOB^=90°

Xét tứ giác OBME có:

EOB^+EMB^=90°+90°=180°

Do đó, tứ giác OBME là tứ giác nội tiếp.

Câu hỏi cùng chủ đề

Xem tất cả