Cho đoạn mạch gồm RLC mắc nối tiếp có R thay đổi, Giữa AM chỉ có R, MN có

Cho đoạn mạch gồm RLC mắc nối tiếp có R thay đổi, Giữa AM chỉ có R, MN có tụ C, NB có cuộn dây không thuần cảm. Đặt vào 𝐴, 𝐵 điện áp xoay chiều \(u = 30\sqrt {14} \cos \left( {\omega t} \right)(V)\) (với 𝜔 không thay đổi). Điện áp tức thời ở hai đầu đoạn mạch MB lệch pha 𝜋/3 so với dòng điện trong mạch. Khi giá trị biến trở 𝑅 = 𝑅1 thì công suất tiêu thụ trên biến trở là 𝑃 và điện áp hiệu dụng hai đầu đoạn mạch 𝑀𝐵𝑈1. Khi giá trị biến trở là 𝑅 = 𝑅2𝑅2 < 𝑅1 thì công suất tiêu thụ trên biến trở vẫn là 𝑃 và điện áp hiệu dụng hai đầu đoạn mạch 𝑀𝐵𝑈2. Biết rằng 𝑈1 + 𝑈2 = 90 𝑉. Tỉ số 𝑅2/𝑅1 gần nhất với giá trị nào sau đây?

A. 0,52.
B. 0,24.
C. 0,44.
D. 0,21.

Trả lời

\(\tan {\varphi _{rLC}} = \tan \frac{\pi }{3} = \sqrt 3 = \frac{{{Z_{LC}}}}{r}\). Chuẩn hóa \(\left\{ \begin{array}{l}{Z_{LC}} = \sqrt 3 \\r = 1\end{array} \right.\)

Hai giá trị R cho cùng \({P_R} \Rightarrow \) \({R_1}{R_2} = R_0^2 = {r^2} + Z_{LC}^2 = {1^2} + {\left( {\sqrt 3 } \right)^2} = 4\) (1)

\({U_1} + {U_2} = \frac{{U\sqrt {{r^2} + Z_{LC}^2} }}{{\sqrt {{{\left( {{R_1} + r} \right)}^2} + Z_{LC}^2} }} + \frac{{U\sqrt {{r^2} + Z_{LC}^2} }}{{\sqrt {{{\left( {{R_2} + r} \right)}^2} + Z_{LC}^2} }} \Rightarrow 90 = \frac{{30\sqrt 7 .2}}{{\sqrt {{{\left( {{R_1} + 1} \right)}^2} + 3} }} + \frac{{30\sqrt 7 .2}}{{\sqrt {{{\left( {{R_2} + 1} \right)}^2} + 3} }}\) (2)

Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}{R_2} = 1\\{R_1} = 4\end{array} \right. \Rightarrow \frac{{{R_2}}}{{{R_1}}} = 0,25\). Chọn B

Câu hỏi cùng chủ đề

Xem tất cả