Cho đa thức A(t) = 2t^4 – 8t^3 + 9t + 3

Bài 2 trang 30 SBT Toán 7 Tập 2:

Cho đa thức A(t) = 2t4 – 8t3 + 9t + 3.

Tìm đa thức B(t) sao cho B(t) – A(t) = –4t3 + 3t2 + 8t.

Trả lời

Ta có B(t) – A(t) = –4t3 + 3t2 + 8t

Suy ra B(t) = A(t) + (–4t3 + 3t2 + 8t)

Do đó B(t) = (2t4 – 8t3 + 9t + 3) + (–4t3 + 3t2 + 8t)

                  = 2t4 – 8t3 + 9t + 3 – 4t3 + 3t2 + 8t

                  = 2t4 + (– 8t3 – 4t3) + 3t2 + (9t + 8t) + 3

                  = 2t4 – 12t3 + 3t2 + 17t + 3

Vậy B(t) = 2t4 – 12t3 + 3t2 + 17t + 3.

Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 1: Biểu thức số, biểu thức đại số

Bài 2: Đa thức một biến

Bài 3: Phép cộng và phép trừ đa thức một biến

Bài 4: Phép nhân và phép chia đa thức một biến

Bài tập cuối chương 7

Bài 1: Góc và cạnh của một tam giác

Câu hỏi cùng chủ đề

Xem tất cả