Cho đa thức P(x) = 3x^3 – 2x^2 + 5. Chia đa thức P(x) cho đa thức Q(x) (Q(x) ≠ 0) được thương là đa thức S(x) = 3x – 2 và dư là đa thứ

Bài 45 trang 54 SBT Toán 7 Tập 1: 

Cho đa thức P(x) = 3x3 – 2x2 + 5. Chia đa thức P(x) cho đa thức Q(x) (Q(x) ≠ 0) được thương là đa thức S(x) = 3x – 2 và dư là đa thức R(x) = 3x + 3. Tìm đa thức Q(x).

Trả lời

Dựa vào quy tắc phép chia ta có:

P(x) = Q(x) . S(x) + R(x)

Hay P(x) – R(x) = Q(x) . S(x)

Suy ra Q(x) = [P(x) – R(x)] : S(x)

Do đó Q(x) = [(3x3 – 2x2 + 5) – (3x + 3)] : (3x – 2)

                   = (3x3 – 2x2 + 5 – 3x – 3) : (3x – 2)

                   = (3x3 – 2x2 – 3x + 2) : (3x – 2)

Ta thực hiện đặt tính chia đa thức như sau:

Sách bài tập Toán 7 Bài 5 (Cánh diều): Phép chia đa thức một biến  (ảnh 1)

Khi đó Q(x) = (3x3 – 2x2 – 3x + 2) : (3x – 2) = x2 – 1.

Vậy Q(x) = x2 – 1.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 3. Phép cộng, phép trừ đa thức một biến

Bài 4. Phép nhân đa thức một biến

Bài 5. Phép chia đa thức một biến

Bài tập cuối chương 6

Bài 1. Tổng các góc của một tam giác

Bài 2. Quan hệ giữa góc và cạnh đối diện. Bất đẳng thức tam giác

 

Câu hỏi cùng chủ đề

Xem tất cả