Cho cấp số cộng (un) có u1 = 1/3 và u1 + u2 + u3 = – 1.

Bài 5 trang 52 Toán 11 Tập 1: Cho cấp số cộng (un) có u1 = 13 và u1 + u2 + u3 = – 1.

a) Tìm công sai d và viết công thức của số hạng tổng quát u­n.

b) Số – 67 là số hạng thứ mấy của cấp số cộng trên.

c) Số 7 có phải là một số hạng của cấp số cộng trên không?

Trả lời

a) Ta có: u1 + u2 + u3 = – 1

 u1 + u1 + d + u1 + 2d = – 1

 3u1 + 3d = – 1

Mà u1 = 13 nên d = -23

Khi đó công thức tổng quát của cấp số cộng là: un = 1323n1=23n+13 với mọi n  ℕ*.

b) Xét un = 23n+13= -67

23n=2023

 n = 101

Vậy số – 67 là số hạng thứ 101 của dãy.

c) Xét un = 7

23n+13=7

23n=203

 n = – 10  ℕ*

Vậy số 7 không phải là một số hạng trong cấp số cộng.

Xem thêm lời giải bài tập Toán lớp 11 Cánh diều hay, chi tiết khác:

Bài tập cuối chương 1

Bài 1: Dãy số

Bài 2: Cấp số cộng

Bài 3: Cấp số nhân

Bài tập cuối chương 2

Bài 1: Giới hạn của dãy số

Câu hỏi cùng chủ đề

Xem tất cả