Cho ba đường thẳng (d1): y = –2x + 1 ; (d2): y = x + 4 và (d3): y = 2mx – 3 (m ≠ 0)

Bài tập 7.27 trang 30 SBT Toán 8 Tập 2: Cho ba đường thẳng

(d1): y = –2x + 1 ; (d2): y = x + 4 và (d3): y = 2mx – 3 (m ≠ 0).

a) Tìm giao điểm của hai đường thẳng (d1) và (d2).

b) Xác định giá trị của m để ba đường thẳng đã cho đồng quy.

Trả lời

a) Gọi I(x0; y0) là giao điểm của (d1) và (d2).

Khi đó, tọa độ điểm I thỏa mãn y0 = –2x0 + 1 và y0 = x0 + 4.

Suy ra –2x0 + 1 = x0 + 4

–3x0 = 3

x0 = –1

Do đó, y0 = –1 + 4 = 3.

Vậy điểm I(–1; 3).

b)

Để ba đường thẳng đồng quy thì (d3) phải đi qua I(–1; 3) tức là khi x = –1 thì y = 3. Thay vào công thức (d3) ta có:

3 = 2m.(–1) – 3

–2m – 3 = 3

–2m = 6

m = –3

Vậy m = –3 thỏa mãn yêu cầu đề bài.

Xem thêm các bài giải SBT Toán lớp 8 Kết nối tri thức hay, chi tiết khác:

 

Câu hỏi cùng chủ đề

Xem tất cả