Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ∆ABC = ∆DEF, hãy chứng minh AH = DK

Bài 4.36 trang 65 Tập 1: Cho AH và DK lần lượt là hai đường cao của hai tam giác ABC và DEF như Hình 4.38. Biết rằng ∆ABC = ∆DEF, hãy chứng minh AH = DK.

Sách bài tập Toán 7 Bài 15: Các trường hợp bằng nhau của tam giác vuông - Kết nối tri thức (ảnh 1)

Trả lời

Vì ∆ABC = ∆DEF nên  

BAC^=EDF^;   B^=E^;   C^=F^AB=DE;   AC=DF;  BC=EF (các góc tương ứng và các cạnh tương ứng bằng nhau).

Vì AH là đường cao của tam giác ABC nên AH vuông góc với BC. Do đó, AHB^=90°.

Vì DK là đường cao của tam giác DEF nên DK vuông góc với EF. Do đó, DKE^=90°.

Xét ∆ABH và ∆DEK có:  

AHB^=DKE^=90° (chứng minh trên)

AB = DE (chứng minh trên)

B^=E^ (chứng minh trên)

Do đó, ∆ABH = ∆DEK (cạnh huyền – góc nhọn).

Suy ra AH = DK.

Xem thêm các bài giải SBT Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Bài 15: Các trường hợp bằng nhau của tam giác vuông

Bài 16: Tam giác cân. Đường trung trực của đoạn thẳng

Ôn tập chương 4

Bài 17: Thu thập và phân loại dữ liệu

Câu hỏi cùng chủ đề

Xem tất cả