Cho ∆ABC vuông tại A, đường cao AH, lấy I là trung điểm AC. Gọi K và D thứ tự là trung điểm

Cho ∆ABC vuông tại A, đường cao AH, lấy I là trung điểm AC. Gọi K và D thứ tự là trung điểm của AH và HC. Khẳng định nào sau đây là sai?

A. I là giao điểm ba trung trực của ∆AHC;

B. KD // AC;

C. BK AD;

D. Cả A, B, C đều sai.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: D

Cho ∆ABC vuông tại A, đường cao AH, lấy I là trung điểm AC. Gọi K và D thứ tự là trung điểm  (ảnh 1)

Trong ∆AHC vuông tại H, dễ dàng chứng minh được AI=CI=HI=12AC.

Do đó I cách đều ba đỉnh của tam giác nên I là giao điểm ba trung trực của ∆AHC.

Ta có AH BC, DI BC suy ra AH // DI nên KDI^=HKD^ (so le trong);

AH BC, IK AK suy ra IK // BC nên HDK^=IKD^ (so le trong).

Xét ∆KHD và ∆DIK có:

HKD^=KDI^; KD là cạnh chung; HDK^=IKD^

Do đó ∆KHD = ∆DIK (g.c.g).

Suy ra HK = ID, HD = IK (các cặp cạnh tương ứng)

Xét ∆KDH (vuông tại H) và ∆ICD (vuông tại D) có:

HK = ID (chứng minh trên);

HD = DC (do DI là trung trực của HC).

Do đó ∆KDH = ∆IDC (hai cạnh góc vuông).

Suy ra KDH^=ICD^ (hai góc tương ứng)

Mà hai góc này ở vị trí đồng vị nên DK // AC.

Lại có AB AC nên DK AB

Trong ∆ABD có: AH BD (giả thiết), DK AB và AH cắt DK tại K

Do đó K là trực tâm ∆ABD, suy ra BK AD.

Câu hỏi cùng chủ đề

Xem tất cả