Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài

Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài BC = 5cm. Độ dài AG là:

A. 2 cm;

B. 3 cm;

C. 5cm;

D. 8 cm.

Trả lời

Hướng dẫn giải:

Đáp án đúng là: C

Cho ΔABC có hai đường trung tuyến BN, CP vuông góc với nhau tại G. Biết độ dài  (ảnh 1)

Xét ∆ABC có hai đường trung tuyến BN, CP cắt nhau tại G nên G là trọng tâm của ∆ABC. Do đó AG là đường trung tuyến thứ ba của tam giác.

Giả sử AG cắt BC tại O.

Khi đó O là trung điểm của BC nên GO là đường trung tuyến của ∆GBC.

Xét ΔBGC vuông tại G (do BGC^=90°), có GO là đường trung tuyến của ∆GBC nên theo kết quả của Ví dụ 2, ta suy ra OG=OB=OC=12BC.

OG=12AG (do G là trọng tâm của ∆ABC)

Suy ra AG = BC = 5 (cm).

Câu hỏi cùng chủ đề

Xem tất cả