Câu hỏi:
19/01/2024 82
Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:
Cho ∆ABC có C(–1; 2), đường cao BH: x – y + 2 = 0, đường phân giác trong AN: 2x – y + 5 = 0. Tọa độ điểm A là:
A.
B.
C.
D.
Trả lời:
Đáp án đúng là: A
Đường cao BH: x – y + 2 = 0 có vectơ pháp tuyến là .
Vì BH là đường cao của ∆ABC nên BH ⊥ AC.
Suy ra vectơ pháp tuyến của BH là vectơ chỉ phương của AC.
Do đó vectơ chỉ phương của AC là .
Vì vậy AC có vectơ pháp tuyến là .
Đường thẳng AC đi qua C(–1; 2), có vectơ pháp tuyến
Suy ra phương trình AC: 1(x + 1) + 1(y – 2) = 0.
⇔ x + y – 1 = 0.
Ta có A là giao điểm của AC và AN.
Do đó tọa độ của điểm A là nghiệm của hệ phương trình:
Khi đó ta có
Vậy ta chọn phương án A.
Đáp án đúng là: A
Đường cao BH: x – y + 2 = 0 có vectơ pháp tuyến là .
Vì BH là đường cao của ∆ABC nên BH ⊥ AC.
Suy ra vectơ pháp tuyến của BH là vectơ chỉ phương của AC.
Do đó vectơ chỉ phương của AC là .
Vì vậy AC có vectơ pháp tuyến là .
Đường thẳng AC đi qua C(–1; 2), có vectơ pháp tuyến
Suy ra phương trình AC: 1(x + 1) + 1(y – 2) = 0.
⇔ x + y – 1 = 0.
Ta có A là giao điểm của AC và AN.
Do đó tọa độ của điểm A là nghiệm của hệ phương trình:
Khi đó ta có
Vậy ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:
Cho ∆ABC có A(2; –1), B(4; 5), C(–3; 2). Phương trình tổng quát của đường trung tuyến AM là:
Câu 2:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Trong mặt phẳng Oxy, cho đường thẳng d: x + 2y – 3 = 0 và hai điểm A(–1; 2). B(2; 1). Điểm C thuộc đường thẳng d sao cho diện tích ∆ABC bằng 2. Tọa độ điểm C là:
Câu 3:
Đường tròn (C) có tâm I(–2; 3) và đi qua điểm M(2; –3) có phương trình là:
Đường tròn (C) có tâm I(–2; 3) và đi qua điểm M(2; –3) có phương trình là:
Câu 5:
Tọa độ tâm I và bán kính R của đường tròn (C): (x + 1)2 + y2 = 8 là:
Tọa độ tâm I và bán kính R của đường tròn (C): (x + 1)2 + y2 = 8 là:
Câu 6:
Cho đường tròn (C): x2 + y2 + 4x + 4y – 17 = 0, biết tiếp tuyến của (C) song song với đường thẳng d: 3x – 4y – 2023 = 0. Phương trình tiếp tuyến của đường tròn (C) là:
Cho đường tròn (C): x2 + y2 + 4x + 4y – 17 = 0, biết tiếp tuyến của (C) song song với đường thẳng d: 3x – 4y – 2023 = 0. Phương trình tiếp tuyến của đường tròn (C) là:
Câu 7:
Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:
Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:
Câu 8:
Cho M(x; y) nằm trên elip (E): . Tỉ số giữa tiêu cự và độ dài trục lớn bằng:
Cho M(x; y) nằm trên elip (E): . Tỉ số giữa tiêu cự và độ dài trục lớn bằng:
Câu 9:
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
Đường thẳng ∆ đi qua giao điểm của hai đường thẳng d1: 2x + y – 3 = 0 và d2: x – 2y + 1 = 0, đồng thời tạo với d3: y – 1 = 0 một góc Phương trình đường thẳng ∆ là:
Câu 10:
Trong mặt phẳng Oxy, cho hai điểm A(2; 4) và B(–2; 10). Giá trị k để điểm D(k; k + 1) thuộc đường thẳng AB là:
Trong mặt phẳng Oxy, cho hai điểm A(2; 4) và B(–2; 10). Giá trị k để điểm D(k; k + 1) thuộc đường thẳng AB là:
Câu 12:
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Câu 13:
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Giao điểm M của hai đường thẳng (d): và (d’): 3x – 2y – 1 = 0 là:
Câu 15:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là: