Cho a, b, c là ba số tuỳ ý. Chứng minh: Nếu a + b + c = 0 thì a^3 + b^3 + c^3 = 3abc
Bài 33* trang 19 SBT Toán 8 Tập 1: Cho a, b, c là ba số tuỳ ý. Chứng minh: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.
Bài 33* trang 19 SBT Toán 8 Tập 1: Cho a, b, c là ba số tuỳ ý. Chứng minh: Nếu a + b + c = 0 thì a3 + b3 + c3 = 3abc.
Do a + b + c = 0nên c = ‒a ‒ b.
Khi đó:
a3 + b3 + c3 = a3 + b3 + (‒a ‒ b)3
= a3 + b3 + (‒a)3 ‒ 3(–a)2b + 3(–a)b2 ‒ b3
= a3 + b3 ‒ a3 ‒ 3a2b ‒ 3ab2 ‒ b3
= ‒3a2b ‒ 3ab2 = 3ab(‒a ‒ b) = 3abc
Vậy nếu a + b + c = 0thì a3 + b3 + c3 = 3abc.
Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:
Bài 3: Hằng đẳng thức đáng nhớ
Bài 4: Vận dụng hằng đẳng thức vào phân tích đa thức thành nhân tử