c) Tia CD cắt AH tại M và cắt BE tại N. Chứng minh rằng tứ giác AMBN là hình bình hành.

c) Tia CD cắt AH tại M và cắt BE tại N. Chứng minh rằng tứ giác AMBN là hình bình hành.

Trả lời

c) • Do AHBE là hình chữ nhật nên AH // BE hay MH // NE

Suy ra MHD^=NED^ (so le trong).

• Xét DMHD và DNED có:

MHD^=NED^ (chứng minh trên);

DH = DE (do E là điểm đối xứng với H qua D);

HDM^=EDN^ (đối đỉnh).

Do đó DMHD = DNED (g.c.g)

Suy ra DM = DN (hai cạnh tương ứng).

Hay D là trung điểm của NM.

• Xét tứ giác AMBN có hai đường chéo AB và NM cắt nhau tại trung điểm D của mỗi đường

Suy ra AMBN là hình bình hành.

Câu hỏi cùng chủ đề

Xem tất cả