Cho hình bình hành ABCD có AB = 2AD. Gọi E và F lần lượt là trung điểm của AB và CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE.

Cho hình bình hành ABCD có AB = 2AD. Gọi E và F lần lượt là trung điểm của AB và CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE.

a) Chứng minh rằng tứ giác AECF là hình bình hành.

Trả lời

a)

Cho hình bình hành ABCD có AB = 2AD. Gọi E và F lần lượt là trung điểm của AB và CD, I là giao điểm của AF và DE, K là giao điểm của BF và CE. (ảnh 1)

• Do ABCD là hình bình hành nên AB = CD và AB // CD.

Vì E là trung điểm của AB nên EA=EB=12AB.

     F là trung điểm của CD nên FC=FD=12CD.

Mà AB = CD (chứng minh trên).

Do đó EA = EB = FC = FD.

• Xét tứ giác AECF có EA = FC và EA // FC (do AB // CD)

Suy ra AECF là hình bình hành.

Câu hỏi cùng chủ đề

Xem tất cả