Bằng định nghĩa, tính đạo hàm của hàm số y = tanx tại điểm x bất kì

Hoạt động 5 trang 66 Toán 11 Tập 2: Bằng định nghĩa, tính đạo hàm của hàm số y = tanx tại điểm x bất kì, xπ2+kπ(k ∈ ℤ)

Trả lời

Xét ∆x là số gia của biến số tại điểm x bất kì, xπ2+kπ(k ∈ ℤ)

Ta có: ∆y = f(x + ∆x) – f(x) = tan(x + ∆x) – tanx.

Suy ra limΔx0ΔyΔx=limΔx0tanx+ΔxtanxΔx

=limΔx0sinx+Δxcosx+ΔxsinxcosxΔx

=limΔx0sinx+Δxcosxcosx+ΔxsinxΔxcosx+Δxcosx

=limΔx0sinx+ΔxxΔxcosx+Δxcosx

=limΔx0sinΔxΔxcosx+Δxcosx

=limΔx0sinΔxΔxlimΔx01cosx+Δxcosx

=11cosx+0cosx=1cos2x.

Vậy đạo hàm của hàm số y = tanx tại điểm x bất kì, xπ2+kπ(k ∈ ℤ) là y'=1cos2x.

Xem thêm các bài giải SGK Toán lớp 11 Cánh diều hay, chi tiết khác:

Câu hỏi cùng chủ đề

Xem tất cả