Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ
22
10/09/2024
Ba số phân biệt có tổng là 217 có thể coi là các số hạng liên tiếp của một cấp số nhân, cũng có thể coi là số hạng thứ 2, thứ 9, thứ 44 của một cấp số cộng. Hỏi phải lấy bao nhiêu số hạng đầu của cấp số cộng này để tổng của chúng bằng 210?
A. 40.
B. 30.
C. 20.
D. 10.
Trả lời
Đáp án đúng là: D
Gọi số hạng thứ 2, thứ 9 và thứ 44 của cấp số cộng này là u2, u9, u44. Giả sử cấp số cộng có số hạng đầu là u1 và công sai là d. Khi đó ta có:
u2 = u1 + d;
u9 = u1 + 8d = (u1 + d) + 7d = u2 + 7d;
u44 = u1 + 43d = (u1 + d) + 42d = u2 + 42d.
Vì 3 số này là các số hạng liên tiếp của một cấp số nhân nên ta có:
hay u2(u2 + 42d) = (u2 + 7d)2.
Và tổng của 3 số đó là 217 nên u2 + u9 + u44 = u2 + u2 + 7d + u2 + 42d = 3u2 + 49d = 217.
Vậy ta có hệ .
Do đó u1 = u2 – d = 7 – 4 = 3.
Gọi n số hạng đầu của cấp số cộng có tổng là 210.
Khi đó hay ⇔ 210 = n(2n + 1)
⇔ 2n2 + n – 210 = 0 .
Vì n nguyên dương nên n = 10. Vậy phải lấy 10 số hạng đầu của cấp số cộng này để tổng của chúng bằng 210.