Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi u1 = a, un + 1 = qun + d.

Một dãy số (un) được gọi là một cấp số nhân cộng nếu nó cho bởi hệ thức truy hồi

u1 = a, un + 1 = qun + d.

Nếu q = 1 ta có cấp số cộng với công sai d, còn nếu d = 0 ta có cấp số nhân với công bội q.

a) Giả sử q ≠ 1. Dự đoán công thức số hạng tổng quát un.

Trả lời

a) Ta viết lần lượt các số hạng của dãy:

u1 = a;

u2 = qu1 + d;

u3 = qu2 + d = q(qu1 + d) + d = q2u1 + qd + d = q2u1+ d(q + 1);

u4 = qu3 + d = q(q2u1 + qd + d) + d = q3u1 + q2d + qd + d

= q3u1 + d(q2 + q + 1) = q3u1 + d 1q31q     (với q ≠ 1).

Làm tương tự ta được công thức số hạng tổng quát un:

un = qn – 1u1 + d(qn – 2 + qn – 3 + ... + 1) = qn – 1u1 + d1qn11q.

Câu hỏi cùng chủ đề

Xem tất cả