Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân thì ba số ấy bằng nhau.

Chứng minh rằng nếu ba số theo thứ tự vừa lập thành một cấp số cộng vừa lập thành một cấp số nhân thì ba số ấy bằng nhau.

Trả lời

Gọi x, y lần lượt là số thứ nhất và số thứ ba trong ba số đó.

Vì ba số theo thứ tự đó lập thành một cấp số cộng nên số thứ hai là x+y2.

Khi đó, ba số cần tìm có dạng: x, x+y2, y.

Vì ba số này lập thành một cấp số nhân nên ta có

xy=x+y22 4xy = x2 + 2xy + y2 x2 – 2xy + y2 = 0 (x − y)2 = 0, tức là x = y.

Suy ra x+y2=x+x2=2x2=x.

Vậy ba số đó bằng nhau.

Câu hỏi cùng chủ đề

Xem tất cả