b) Giả sử tam giác ABC vuông tại A,  góc ABC= 30 độ , AC = a,SA= acăn 3/2 . Tính số đo của góc nhị diện [S, BC, A].

b) Giả sử tam giác ABC vuông tại A, ABC^=30°  , AC = a, SA=a32. Tính số đo của góc nhị diện [S, BC, A].

Trả lời

b) Vì BC ^ (SAH) nên BC ^ SH mà AH ^ BC nên SHA^  là góc phẳng nhị diện của góc nhị diện [S, BC, A].

Xét tam giác ABC vuông tại A, ABC^=30° , AC = a có: tanABC^=ACAB

AB=ACtanABC^=atan30°=a3.

Xét tam giác ABC vuông tại A, có 1AH2=1AB2+1AC2=13a2+1a2=43a2

AH=a32.

Vì SA ^ (ABC) nên SA ^ AH.

Xét tam giác SAH vuông tại A có: tanSHA^=SAAH=a32a32=1SHA^=45°  .

Vậy số đo của góc nhị diện [S, BC, A] bằng 45°.

Câu hỏi cùng chủ đề

Xem tất cả