a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không
114
20/12/2023
Bài 68 trang 88 sách bài tập Toán lớp 6 Tập 1:
a) Có tồn tại số tự nhiên n để n2 + n + 2 chia hết cho 5 hay không?
b) Tìm số tự nhiên n nhỏ nhất sao cho n vừa là tổng của 5 số tự nhiên liên tiếp, vừa là tổng của 7 số tự nhiên liên tiếp.
Trả lời
a) Đặt x = n2 + n + 2
Nếu n chia hết cho 5 thì x chia 5 dư 2.
Nếu n chia cho 5 dư 1 thì x chia cho 5 dư 4.
Nếu n chia cho 5 dư 2 thì x chia cho 5 dư 3.
Nếu n chia cho 5 dư 3 thì x chia cho 5 dư 4.
Nếu n chia cho 5 dư 4 thì x chia cho 5 dư 2.
Vậy x không chia hết cho 5 với mọi số tự nhiên n.
b) Ta có n = a + (a + 1) + (a + 2) + (a + 3) + (a + 4) với a là số tự nhiên
Khi đó n = 5a + 10 = 5.(a + 2) chia hết cho 5.
Ta lại có n = b + (b + 1) + (b + 2) + (b + 3) + (b + 4) + (b + 5) + (b + 6) với b là số tự nhiên.
Khi đó n = 7b + 21 = 7.(b + 3) chia hết cho 7.
Do đó n vừa chia hết cho 5 vừa chia hết cho 7 nên n là bội chung của 5 và 7.
Mà n là nhỏ nhất nên n là BCNN(5; 7).
Ta có 5 = 5, 7 = 7.
BCNN(5, 7) = 5.7 = 35.
Vậy n = 35.
Xem thêm các bài giải SBT Toán lớp 6 Cánh diều hay, chi tiết khác:
Bài 5: Phép nhân các số nguyên
Bài 6: Phép chia hết hai số nguyên. Quan hệ chia hết trong tập hợp số nguyên
Bài ôn tập cuối chương 2
Bài 1: Tam giác đều. Hình vuông. Lục giác đều
Bài 2: Hình chữ nhật. Hình thoi
Bài 3: Hình bình hành