30 Bài tập về công thức nhị thức Newton (2024) có đáp án

1900.edu.vn xin giới thiệu: Tổng hợp các dạng bài tập về cách chứng minh đường tròn ngoại tiếp tứ giác Toán 11. Đây sẽ là tài liệu tham khảo hữu ích, giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 11 tốt hơn. Mời các bạn cùng tham khảo chi tiết bài viết dưới đây.

Bài tập về công thức nhị thức Newton

I. Lí thuyết / Phương pháp giải

1. Định lí và hệ quả

a. Định lí: Với \forall n\in {{\mathbb{N}}^{*}} với cặp số \left( a,b \right)ta có:

{{\left( a+b \right)}^{n}}=\sum\limits_{k=0}^{n}{C_{n}^{k}{{a}^{n-k}}}{{b}^{k}}=C_{n}^{0}{{a}^{n}}+C_{n}^{1}{{a}^{n-1}}b+C_{n}^{2}{{a}^{n-2}}{{b}^{2}}+...+C_{n}^{n-1}{{a}^{1}}{{b}^{n-1}}+C_{n}^{n}{{b}^{n}}

b. Hệ quả

Hệ quả: {{\left( 1+x \right)}^{n}}=C_{n}^{0}+xC_{n}^{1}+{{x}^{2}}C_{n}^{2}+...+{{x}^{n}}C_{n}^{n}

- Từ hệ quả trên ta rút được những kết quả sau đây:

{{2}^{n}}=C_{n}^{0}+C_{n}^{1}+C_{n}^{2}+...+C_{n}^{n}

C_{n}^{0}-C_{n}^{1}+C_{n}^{2}-C_{n}^{3}+...+{{\left( -1 \right)}^{n}}C_{n}^{n}=0

c. Nhận xét

Trong khai triển Newton {{\left( a+b \right)}^{n}} có tính chất sau:

- Gồm n + 1 phần tử.

- Số mũ của a giảm từ n đến 0 và số mũ của b tăng từ 0 đến n.

- Tổng số mũ của a và b trong mỗi số hạng bằng n .

- Các hệ số có tính đối xứng C_{n}^{k}=C_{n}^{n-k},\left( 0\le k\le n \right).

- Số hạng tổng quát: {{T}_{k+1}}=C_{n}^{k}{{a}^{b-k}}{{b}^{k}}

Chú ý:

  • Số hạng thứ nhất {{T}_{1}}={{T}_{0+1}}=C_{n}^{0}{{a}^{n}}
  • Số hạng thứ k: {{T}_{k}}={{T}_{k-1+1}}=C_{n}^{k-1}{{a}^{n-k+1}}{{b}^{k-1}}

2. Các công thức liên quan đến khai triển nhị thức Newton

  • {{\left( x+1 \right)}^{n}}=C_{n}^{0}{{x}^{n}}+C_{n}^{1}{{x}^{n-1}}+C_{n}^{2}{{x}^{n-2}}+...+C_{n}^{k}{{x}^{n-k}}+...C_{n}^{n-1}x+C_{n}^{n}
  • {{\left( 1+x \right)}^{n}}=C_{n}^{0}+C_{n}^{1}x+C_{n}^{2}{{x}^{2}}+...+C_{n}^{k}{{x}^{k}}+...C_{n}^{n-1}{{x}^{n-1}}+C_{n}^{n}{{x}^{n}}
  • {{\left( x-1 \right)}^{n}}=C_{n}^{0}-C_{n}^{1}x+C_{n}^{2}{{x}^{2}}-...+{{\left( -1 \right)}^{k}}C_{n}^{k}{{x}^{k}}+...+{{\left( -1 \right)}^{n-1}}C_{n}^{n-1}{{x}^{n-1}}+{{\left( -1 \right)}^{n}}C_{n}^{n}{{x}^{n}}
  • C_{n}^{k}=C_{n}^{n-k}
  • C_{n}^{k}+C_{n}^{k+1}=C_{n+1}^{k+1},\left( n\ge 1 \right)
  • k.C_{n}^{k}=\frac{k.n!}{k!\left( n-k \right)!}==\frac{n.\left( n-1 \right)!}{\left( n-k \right)!.\left( k-1 \right)!}=n.C_{n-1}^{k-1}
  • \frac{1}{k+1}.C_{n}^{k}=\frac{k.n!}{\left( k+1 \right).k!\left( n-k \right)!}=\frac{n.\left( n-1 \right)!}{\left( n+1 \right)\left( n-k \right)!\left( k+1 \right)!}=\frac{1}{n+1}.C_{n+1}^{k+1}

3. Công thức Newton mở rộng

  • C_{n}^{k}+2C_{n}^{k+1}+C_{n}^{k+2}=C_{n+2}^{k+2}
  • C_{n}^{k}+3C_{n}^{k+1}+3C_{n}^{k+2}+C_{n}^{k+3}=C_{n+3}^{k+3}

II. Ví dụ minh họa

Ví dụ 1: Viết khai triển theo công thức nhị thức Newton:

a. {{\left( a+2b \right)}^{5}}
b. {{\left( a-\sqrt{2} \right)}^{6}}
c. {{\left( x-\frac{1}{x} \right)}^{10}}

Hướng dẫn giải

a. Khai triển Newton của {{\left( a+2b \right)}^{5}}=\sum\limits_{k=0}^{5}{C_{5}^{k}{{a}^{5-k}}{{\left( 2b \right)}^{k}}}=\sum\limits_{k=0}^{5}{C_{5}^{k}{{a}^{5-k}}{{.2}^{k}}.{{b}^{k}}}

{{\left( a+2b \right)}^{5}}=C_{5}^{0}{{a}^{5}}+C_{5}^{1}{{a}^{4}}2b+...+C_{5}^{5}32{{b}^{5}}

b. Khai triển Newton của {{\left( a-\sqrt{2} \right)}^{6}}=\sum\limits_{k=0}^{6}{C_{6}^{k}{{a}^{6-k}}{{\left( \sqrt{2} \right)}^{k}}}

{{\left( a-\sqrt{2} \right)}^{6}}=C_{6}^{0}{{a}^{6}}+C_{6}^{1}{{a}^{5}}.\sqrt{2}+C_{6}^{2}{{a}^{4}}.2+...+C_{6}^{6}.{{\left( \sqrt{2} \right)}^{6}}

c. Khai triển Newton của {{\left( x-\frac{1}{x} \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}.{{x}^{10-k}}.{{\left( \frac{-1}{x} \right)}^{k}}=}\sum\limits_{k=0}^{10}{C_{10}^{k}.{{x}^{10-k}}.\frac{{{\left( -1 \right)}^{k}}}{{{x}^{k}}}=\sum\limits_{k=0}^{10}{C_{10}^{k}.{{\left( -1 \right)}^{k}}{{x}^{10-2k}}}}

Ví dụ 2: Tìm hệ số của {{x}^{7}} trong khai triển biểu thức {{\left( 1-2x \right)}^{10}}

Hướng dẫn giải

Ta có: f\left( x \right)={{\left( 1-2x \right)}^{10}}=\sum\limits_{k=0}^{10}{C_{10}^{k}{{.1}^{10-k}}{{\left( -2x \right)}^{k}}=}\sum\limits_{k=0}^{10}{C_{n}^{k}.{{\left( -2 \right)}^{k}}.{{x}^{k}}}

Số hạng chứa {{x}^{7}} trong khai triển ứng với k = 7. Khi đó hệ số của số hạng chứa {{x}^{7}}: C_{10}^{7}.{{\left( -2 \right)}^{7}}=-15360

III. Bài tập vận dụng

Bài 1: Tìm hệ số không chứa x trong khai triển sau: {{\left( {{x}^{3}}-\frac{2}{x} \right)}^{n}}biết rằng: C_{n}^{n-1}+C_{n}^{n-2}=78,x>0

Hướng dẫn giải

Ta có: C_{n}^{n-1}+C_{n}^{n-2}=78,n>2

\Leftrightarrow \frac{n!}{\left( n-1 \right)!(n-n+1)!}+\frac{n!}{\left( n-2 \right)!\left( n-2+2 \right)!}=78

\Leftrightarrow \frac{n!}{\left( n-1 \right)!(1)!}+\frac{n!}{\left( n-2 \right)!\left( 2 \right)!}=78

\Leftrightarrow n+\frac{n\left( n-1 \right)}{2}=78\Leftrightarrow {{n}^{2}}+n-156=0\Leftrightarrow \left[ \begin{matrix}

n=12\left( TM \right) \\

n=-13\left( L \right) \\

\end{matrix} \right.

Do đó biểu thức khai triển là {{\left( {{x}^{3}}-\frac{2}{x} \right)}^{12}}=\sum\limits_{k=0}^{12}{C_{12}^{k}{{\left( {{x}^{3}} \right)}^{12-k}}{{\left( -\frac{2}{x} \right)}^{k}}}

=\sum\limits_{k=0}^{12}{C_{12}^{k}.{{x}^{36-3k}}.{{\left( \frac{1}{x} \right)}^{k}}.{{\left( -2 \right)}^{k}}}=\sum\limits_{k=0}^{12}{C_{12}^{k}.{{x}^{36-4k}}.{{\left( -2 \right)}^{k}}}

Số hạng không chứa x ứng với k: 36-4k=0\Leftrightarrow k=9

Số hạng không chưa x là: C_{12}^{9}.{{\left( -2 \right)}^{9}}=-112640

Bài 2: Xét khai triển: {{\left( 2x+\frac{1}{x} \right)}^{20}}

a. Viết số hạng thứ k + 1 trong khai triển.

b. Số hạng nào trong khai triển không chứa x.

c. Xác định hệ số của \[{{x}^{4}}\]trong khai triển.

Hướng dẫn giải

{{\left( 2x+\frac{1}{x} \right)}^{20}}=\sum\limits_{k=0}^{20}{C_{20}^{k}{{\left( 2x \right)}^{20-k}}{{\left( \frac{1}{x} \right)}^{k}}=}\sum\limits_{k=0}^{20}{C_{20}^{k}{{2}^{20-k}}{{x}^{20-2k}}}

Số hạng không chứa x trong khai triển ứng với k là: 20-2k=0\Leftrightarrow k=10

Số hạng không chứa x trong khai triển là: C_{20}^{10}{{.2}^{10}}

Số hạng chứa {{x}^{4}} trong khai triển ứng với k là: 20-2k=4\Leftrightarrow k=8

Vậy số hạng chứa {{x}^{4}} trong khai triển có hệ số là: C_{20}^{8}{{.2}^{12}}

Bài 3: Tính tổng: S=\frac{1}{2}C_{n}^{0}-\frac{1}{4}c_{n}^{1}+\frac{1}{6}C_{n}^{3}-\frac{1}{8}C_{n}^{4}+...+\frac{\left( -1 \right)}{2\left( n+1 \right)}C_{n}^{n}

Hướng dẫn giải

Ta có: S=\frac{1}{2}\left( C_{n}^{0}-\frac{1}{2}c_{n}^{1}+\frac{1}{3}C_{n}^{3}-\frac{1}{4}C_{n}^{4}+...+\frac{\left( -1 \right)}{n+1}C_{n}^{n} \right)

Vì \frac{{{\left( -1 \right)}^{k}}}{k+1}C_{n}^{k}=\frac{{{\left( -1 \right)}^{k}}}{k+1}C_{n+1}^{k+1}

\Leftrightarrow S=\frac{1}{2\left( n+1 \right)}\sum\limits_{k=0}^{n}{{{\left( -1 \right)}^{k}}C_{n+1}^{k+1}}=\frac{-1}{2\left( n+1 \right)}\left( \sum\limits_{k=0}^{n+1}{{{\left( -1 \right)}^{k}}C_{n+1}^{k}-C_{n+1}^{0}} \right)=\frac{1}{2\left( n+1 \right)}

Xem thêm các dạng bài tập Toán liên quan khác:

50 Bài tập Hình tròn. Đường tròn. Chu vi hình tròn (có đáp án năm 2024)

50 Bài tập Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn (có đáp án năm 2024)

50 Bài tập Đường tròn ngoại tiếp. Đường tròn nội tiếp (có đáp án năm 2024)

50 Bài tập Độ dài đường tròn, cung tròn (có đáp án năm 2024) - Toán

60 Bài tập về hình tròn. tâm, bán kính, đường kính của hình tròn (có đáp án năm 2024)

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!