30 Bài tập về công thức lượng giác (2024) chi tiết nhất, có đáp án

1900.edu.vn xin giới thiệu Bài tập về công thức lượng giác môn Toán hay, chi tiết nhất sẽ giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán tốt hơn. Mời các em tham khảo:

Bài tập về công thức lượng

I. Lý thuyết

1. Bảng công thức lượng giác dành cho lớp 10 - 11 - 12

Công thức Lượng giác cơ bản

tan x = \frac{sinx}{cosx} cot x = \frac{cosx}{sinx}

sin2x + cos2x = 1

tan x . cot x = 1

1 + tan2 x = \frac{1}{cos2x}

1 + cot2 x = \frac{1}{sin2x}

Thơ nhớ hàm lượng giác cơ bản

Sin bình cộng cos bình thì phải bằng 1

Sin bình thì bằng tan bình trên tan bình cộng 1

Cos bình bằng một trên một cộng tan bình

Một trên sin bình bằng 1 cộng cot bình

Một trên cos bình bằng một cộng tan bình

Bắt được quả tan,

Sin nằm trên cos,

Cot cải lại,

Cos nằm trên sin.

Hoặc là:

Bắt được quả tan,

Sin nằm trên cos (tan x = sin x / cos x),

Cot dại dột,

Bị cos đè cho (cot x = cos x / sin x).

Công thức cộng lượng giác 

cos(a + b) = cos a.cos b - sin a.sin b cos(a - b) = cos a.cos b + sin a.sin b
sin(a + b) = sin a.cos b + sin b.cos a sin(a - b) = sin a.cos b - sin b.cos a
tan(a + b) = \frac{tan a + tan b}{1 - tan a. tan b} tan(a - b) = \frac{tan a - tan b}{1 + tan a. tan b}

Thơ công thức cộng

Cos cộng cos thì bằng hai cos cos

Cos trừ cos phải bằng trừ hai sin sin

Sin cộng sin thì bằng hai sin cos

Sin trừ sin bằng hai cos sin.

Sin thì sin cos cos sin

Cos thì cos cos sin sin nhớ nha dấu trừ

Tan tổng thì lấy tổng tan

Chia một trừ với tích tan, dễ mà.

Công thức các cung liên kết trên đường tròn lượng giác

Góc đối nhau ( cos đối)

Góc bù nhau (sin bù)

Góc phụ nhau (Phụ chéo)

Góc hơn kém (Khác pi tan)

cos (-α) = cos α sin (π - α) = sin α sin (π/2 - α)= cos α sin (π + α) = - sin α
sin (-α) = -sin α cos (π - α) = - cos α cos (π/2 - α) = sinα cos (π + α) = - cosα
tan (-α) = - tan α tan ( π - α) = - tan α tan (π/2 - α) = cot α tan (π + α) = tanα
cot (-α) = -cot α cot (π - α) = – cot α cot (π/2 - α) = tan α cot (π + α) = cotα

Cung hơn kém π / 2

  • cos(π/2 + x) = - sinx
  • sin(π/2 + x) = cosx

Thơ nhớ cung đặc biệt

Cos đối, sin bù, phụ chéo, khác pi tan.

Cosin của 2 góc đối thì bằng nhau.

Sin của 2 góc bù nhau cũng bằng nhau.

Phụ chéo là 2 góc phụ nhau thì sin góc này bằng cos góc kia.

Tan góc này bằng Cot góc kia.

Tan của 2 góc hơn kém pi cũng bằng nhau.

2. Cách học thuộc bảng công thức lượng giác nhanh chóng

Cách học thuộc các công thức lượng giác bằng thơ

Công thức CỘNG trong lượng giác

Cos + cos = 2 cos cos

cos trừ cos = trừ 2 sin sin

Sin + sin = 2 sin cos

sin trừ sin = 2 cos sin.

Sin thì sin cos cos sin

Cos thì cos cos sin sin “coi chừng” (dấu trừ).

Tan tổng thì lấy tổng tan

Chia một trừ với tích tan, dễ òm.

HÀM SỐ LƯỢNG GIÁC

Bắt được quả tan

Sin nằm trên cos (tan@ = sin@:cos@)

Cot dại dột

Bị cos đè cho. (cot@ = cos@:sin@)

Cách 2:

Bắt được quả tan

Sin nằm trên cos

Cot cãi lại

Cos nằm trên sin!

GIÁ TRỊ LƯỢNG GIÁC CỦA CÁC CUNG ĐẶC BIỆT

Cos đối, sin bù, phụ chéo, khác pi tan

Cosin của 2 góc đối bằng nhau; sin của 2 góc bù nhau thì bằng nhau; phụ chéo là 2 góc phụ nhau thì sin góc này = cos góc kia, tan góc này = cot góc kia; tan của 2 góc hơn kém pi thì bằng nhau.

CÔNG THỨC LƯỢNG GIÁC NHÂN BA

Nhân ba một góc bất kỳ,

sin thì ba bốn, cos thì bốn ba,

dấu trừ đặt giữa 2 ta, lập phương chỗ bốn,

… thế là ok.

Công thức gấp đôi:

+ Sin gấp đôi = 2 sin cos

+ Cos gấp đôi = bình cos trừ bình sin

= trừ 1 + 2 lần bình cos

= + 1 trừ 2 lần bình sin

+Tang gấp đôi

Tan đôi ta lấy đôi tan (2 tan)

Chia 1 trừ lại bình tan, ra liền.

Cách nhớ công thức: tan(a + b)=(tana + tanb)/1 - tana.tanb

tan một tổng 2 tầng cao rộng

trên thượng tầng tan + tan tan

dưới hạ tầng số 1 ngang tàng

dám trừ một tích tan tan oai hùng

CÔNG THỨC LƯỢNG GIÁC BIẾN ĐỔI TÍCH THÀNH TỔNG

Cos cos nửa cos(+) cộng cos(-)

Sin sin nửa cos(-) trừ cos (+)

Sin cos nửa sin(+) cộng sin(-)

CÔNG THỨC LƯỢNG GIÁC BIẾN ĐỔI TỔNG THÀNH TÍCH

sin tổng lập tổng sin cô

cô tổng lập hiệu đôi cô đôi chàng

còn tan tử cộng đôi tan (hoặc là: tan tổng lập tổng 2 tan)

một trừ tan tích mẫu mang thương sầu

gặp hiệu ta chớ lo âu,

đổi trừ thành cộng ghi sâu vào lòng

Một phiên bản khác của câu Tan mình cộng với tan ta, bằng sin 2 đứa trên cos ta cos mình… là

tanx cộng tany: tình mình cộng lại tình ta, sinh ra 2 đứa con mình con ta

tanx trù tan y: tình mình hiệu với tình ta sinh ra hiệu chúng, con ta con mình

CÔNG THỨC CHIA ĐÔI (tính theo t = tg(a/2))

Sin, cos mẫu giống nhau chả khác

Ai cũng là một cộng bình tê (1 + t2)

Sin thì tử có hai tê (2t),

cos thì tử có một trừ bình tê (1 - t2).

HỆ THỨC LƯỢNG TRONG TAM GIÁC VUÔNG

Sao Đi Học (Sin = Đối / Huyền)

Cứ Khóc Hoài (Cos = Kề / Huyền)

Thôi Đừng Khóc (Tan = Đối / Kề)

Có Kẹo Đây (Cot = Kề/ Đối)

Sin: đi học (cạnh đối - cạnh huyền)

Cos: không hư (cạnh đối - cạnh huyền)

Tan: đoàn kết (cạnh đối - cạnh kề)

Cot: kết đoàn (cạnh kề - cạnh đối)

Tìm sin lấy đối chia huyền

Cos lấy cạnh kề, huyền chia nhau

Còn tan ta hãy tính sau

Đối trên, kề dưới chia nhau ra liền

Cot cũng dễ ăn tiền

Kề trên, đối dưới chia liền là ra

Sin bù, cos đối, hơn kém pi tan, phụ chéo.

+ Sin bù: Sin(180-a) = sina

+ Cos đối: Cos(-a)=cosa

+ Hơn kém pi tang:

Tan (a + 180) = tan a

Cot (a + 180) = cot a

+ Phụ chéo là 2 góc phụ nhau thì sin góc này bằng cos góc kia, tan góc này bằng cot góc kia.

Công thức tổng quát hơn về việc hơn kém pi như sau:

Hơn kém bội 2 pi sin, cos

Tan, cot hơn kém bội pi.

Sin(a+k.2.1800) = sin a ; Cos(a + k.2.1800) = cos a

Tan (a + k1800)=tan a ; Cot(a + k1800)=cot a

* sin bình + cos bình = 1

* Sin bình = tan bình trên tan bình + 1.

* cos bình = 1 trên 1 + tan bình.

* Một trên cos bình = 1 + tan bình.

* Một trên sin bình = 1 + cot bình.

(Chú ý sin *; cos @ ; tan @ ;cot * với các dấu * và @ là chúng có liên quan nhau trong CT trên)

Học công thức lượng giác “thần chú”

• Sin = đối/ huyền

Co s= kề/ huyền

Tan = đối/ kề

Cot = kề/ huyền

* Thần chú: Sin đi học, Cos không hư, tan đoàn kết, cot kết đoàn

Hoặc: Sao đi học, cứ khóc hoài, thôi đừng khóc, có kẹo đây!

• Công thức cộng:

Bảng công thức lượng giác dành cho lớp 10 - 11 - 12

* Thần chú: Cos thì cos cos sin sin

Sin thì sin cos cos sin rõ ràng

Cos thì đổi dấu hỡi nàng

Sin thì giữ dấu xin chàng nhớ cho!

* Thần chú: Tan một tổng hai tầng cao rộng

Trên thượng tầng tan cộng cùng tan

Hạ tầng số 1 ngang tàng

Dám trừ đi cả tan tan oai hùng

Hoặc: Tan tổng thì lấy tổng tan

Chia một trừ với tích tan, dễ òm.

• Công thức biến đổi tổng thành tích:

Ví dụ: cosx + cosy= 2cos cos

(Tương tự những công thức như vậy)

* Thần chú: cos cộng cos bằng 2 cos cos

Cos trừ cos bằng trừ 2 sin sin

Sin cộng sin bằng 2 sin sin

Sin trừ sin bằng 2 cos sin.

* Tan ta cộng với tan mình bằng sin hai đứa trên cos mình cos ta.

Công thức biến đổi tích thành tổng:

Ví dụ: cosx.cosy=1/2[cos(x+y)+cos(x-y)] (Tương tự những công thức như vậy)

* Thần chú: Cos cos nửa cos(+) cộng cos(-)

Sin sin nửa cos(-) trừ cos(+)

Sin cos nửa sin(+) cộng sin(-)

• Công thức nhân đôi:

Ví dụ: sin2x= 2sinxcosx (Tương tự những công thức như vậy)

Thần chú: Sin gấp đôi bằng 2 sin cos

Cos gấp đôi bằng bình cos trừ bình sin

= trừ 1 cộng hai bình cos

= cộng 1 trừ hai bình sin

Chỉ việc nhớ công thức nhân đôi của cos bằng thần chú trên rồi từ đó có thể suy ra công thức hạ bậc.

Tan gấp đôi = Tan đôi ta lấy đôi tan (2 tan)

Chia 1 trừ lại bình tan, ra liền.

• Hàm số lượng giác và các cung có liên quan đặc biệt:

Ví dụ: Cos(-x) = cosx

Tan( + x) = tan x

* Thần chú: Sin bù, Cos đối, Tan Pi,

Phụ nhau Sin Cos, ắt thì phân chia

Hoặc: Cos đối, sin bù, phụ chéo, hơn kém pi tan.

II. Bài tập vận dụng 

Bài 1. Tính sin2a và tan2a biết cos a = 14 và 3π2π.

Hướng dẫn giải

Vì 3π2πnên sina < 0.

Ta có:

sin2a + cos2a = 1 ⇒ sin2a = 1 – cos2a = 1 - Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác = 1516

⇒ sina = 154.

Ta có: sin2a = 2sina cosa = 2.Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác.14 = -158

Ta có: tana = sinacosa=15

tan2a=2tana1tan2a=Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác==21514=157.

Bài 2. Tính

a) sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác biết sin a = 34 và 0 < a < π2;

b) cos3π8.cosπ8 + sin3π8.sinπ8.

Hướng dẫn giải

a) Vì 0π2 nên cosa > 0.

Ta có: sin2a + cos2a = 1 ⇒ cos2a = 1 – sin2a = 1-Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=716

⇒ cosa = null.

Vậy sinLý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác=sinacosπ3cosasinπ3=34.1274.32=3218 .

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Suy ra: cos3π8.cosπ8+sin3π8.sinπ8=24+24=22.

Bài 3. Tính

a) cos(–15°) + cos255°;

b) sin13π24sin5π24.

Hướng dẫn giải

a) Ta có:

cos(-15o) + cos255o = 2.cos15°+255°2.cos15°255°2

= 2.cos120o.cos(135o) = 2Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy cos(–15°) + cos255° = 22.

b) Ta có:

Lý thuyết Toán 11 Kết nối tri thức Bài 2: Công thức lượng giác

Vậy sin13π24sin5π24=1+24.

Bài 4. Rút gọn biểu thức sau:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

Hướng dẫn giải

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

⇔ P=2sinx

Vậy P = −2sin x.

Bài 5. Chứng minh rằng: cosαsinα=2cos(α+π4).

Hướng dẫn giải

Ta có:

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

Bài 6. Cho sinα=13 và π2<α<π. Tính các giá trị lượng giác của góc 2α.

Hướng dẫn giải

Do π2<α<π ⇒ cos α < 0.

Ta có: cos2α=1sin2α=89

⇒ cosα=223 (do cos α < 0).

Lý thuyết Toán 11 Chân trời sáng tạo Bài 3: Các công thức lượng giác

tan2α=sin2αcos2α=429.97=427.

cot2α=1tan2α=728.

Bài 7. Tính α + β biết tanα=25,  tanβ=37.

Hướng dẫn giải

Áp dụng công thức cộng đối với tang, ta được: Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy α+β=π4.

Bài 8. Cho cos2a=45, với π4<a<π2. Tính sina, cosa, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác, sin2a, Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác.

Hướng dẫn giải

Vì π4<a<π2 nên sina > 0, cosa > 0.

• Áp dụng công thức hạ bậc, ta được: sin2a=1cos2a2=1+452=910

Suy ra sina=310 (do sina > 0)

• Áp dụng công thức hạ bậc, ta được: cos2a=1+cos2a2=1452=110.

Suy ra cosa=110.

• Áp dụng công thức cộng đối với sin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

=310.12+110.32=30+31020.

• Áp dụng công thức nhân đôi, ta được:

sin2a=2sinacosa=2.310.110=35.

• Áp dụng công thức cộng đối với côsin, ta được:

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 9. Chứng minh rằng:

a) cos3x.sinxsin3x.cosx=14sin4x;

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Hướng dẫn giải

a) VT = cos3x.sinx – sin3x.cosx

= cosx.sinx.(cos2x – sin2x)

=12sin2x.cos2x

=14sin4x = VP.

Vậy ta có điều phải chứng minh.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Bài 10. Cho ∆ABC. Chứng minh rằng:

a) sinA+sinB+sinC=4cosA2cosB2cosC2;

b) sinA+sinBcosA+cosB=cotC2;

c) sin2A+sin2B+sin2C=2SR2, với R là bán kính đường tròn ngoại tiếp ∆ABC và S là diện tích ∆ABC.

Hướng dẫn giải

∆ABC, có: A^+B^+C^=180°, suy ra A^+B^=180°C^

Do đó A^+B^2=90°C^2.

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

b) VT=sinA+sinBcosA+cosB=2sinA+B2cosAB22cosA+B2cosAB2

Lý thuyết Toán 11 Cánh diều Bài 2: Các phép biến đổi lượng giác

Vậy ta có điều phải chứng minh.

c) VT = sin2A + sin2B + sin2C

= 2sin(A + B).cos(A – B) + 2sinC.cosC

= 2sin(180° – C).cos(A – B) + 2sinC.cosC

= 2sinC.cos(A – B) + 2sinC.cosC

= 2sinC.[cos(A – B) + cosC]

= 2sinC.[cos(A – B) + cos(180° – A – B)]

= 2sinC.[cos(A – B) – cos(A + B)]

= –4sinC.sinA.sin(–B)

= 4sinA.sinB.sinC

=4.a2R.b2R.c2R=abc4R.2R2=2SR2=VP.

Vậy ta có điều phải chứng minh.

11: Tính:

a. cos37π12;

b. tanπ24+tan7π24.

Hướng dẫn:

a.

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

b.

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

 12: Tính:

a. tanx+π4 biết sinx=35 với π2<x<π;

b. cosαβ biết sinα=513π2<α<π và cosβ=350<β<π2.

Hướng dẫn:

a. Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

b. Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

 13: Chứng minh rằng:
a. sin4x+cos4x= 14cos4x+34
b. cos3x.sin3x+sin3x.cos3x=34sin4x

Hướng dẫn:

a. (Áp dụng công thức hạ bậc) Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

Suy ra đpcm.

b. (Áp dụng công thức góc nhân ba) Ta có:

VT= 14cos3x3sinxsin3x+ 14sin3x3cosx+cos3x=34sinx.cos3x+cosx.sin3x=34sin4x=VP

Suy ra đpcm.

14: Cho tam giác ABC. Chứng minh rằng: 

sin3B2cosA+C2+cos3B2sinA+C2cos(A+C)sinB.tanB=2

Hướng dẫn:

Do tam giác ABC có A+B+C=1800, suy ra A+C=1800B

Do đó, ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

Suy ra đpcm.

 15: Rút gọn biểu thức:

a. A=cos10x+2cos24x+6cos3x.cosxcosx8cosx.cos33x

b.

B=sin3x+cos2xsinxcosx+sin2xcos3xsin2x0;2sinx+10

Hướng dẫn:​

a. Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

b. Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

16: Rút gọn biểu thức:

C=sin2x+2sinax.sinx.cosa+sin2ax

Hướng dẫn:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

 17: Chứng minh biểu thức sau không phụ thuộc vào x:

A=cos2x+cos2π3+x+cos2π3x

Hướng dẫn:

Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

Vậy biểu thức đã cho không phụ thuộc vào x.

18: Chứng minh biểu thức sau không phụ thuộc vào x: 

C=2sin4x+cos4x+sin2xcos2x2sin8x+cos8x

Hướng dẫn:

Ta có:

Công thức lượng giác chi tiết và cách giải bài tập – Toán lớp 10 (ảnh 1)

Vậy biểu thức đã cho không phụ thuộc vào x.

Xem thêm các dạng bài tập hay, có đáp án:

500 Bài tập: Hàm số lượng giác và phương trình lượng giác (có đáp án năm 2024)
Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!