30 Bài tập tìm giá trị lớn nhất của biểu thức (2024) có đáp án

1900.edu.vn xin giới thiệu 30 Bài tập tìm giá trị lớn nhất của biểu thức Toán 9 hay, chi tiết nhất sẽ giúp các bạn học sinh ôn tập và củng cố kiến thức đã học, tự luyện tập nhằm học tốt môn Toán 9 tốt hơn. Mời các em tham khảo:

Bài tập tìm giá trị lớn nhất của biểu thức

1. Phương pháp giải

    Dựa vào điều kiện:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Dấu bằng xảy ra khi A = 0.

2. Ví dụ minh họa

Ví dụ 1: Tìm giá trị nhỏ nhất của biểu thức:

 

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Lời giải:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy giá trị nhỏ nhất của biểu thức A là 4, đạt được khi x = 1

Ví dụ 2: Tìm giá trị lớn nhất của biểu thức sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Lời giải:

    Dấu bằng xảy ra khi 3x - 1 = 0 ⇔ x = 1/3.

    Vậy giá trị lớn nhất của A là √8, đạt được khi x = 1/3.

3. Bài tập tự luận

Bài 1: Tìm giá trị lớn nhất của các biểu thức sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Bài 2: Tìm giá trị nhỏ nhất của các biểu thức sau:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Hướng dẫn giải và đáp án

Bài 1:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Dấu bằng xảy ra khi 2x2 = 0 ⇔ x = 0.

    Vậy giá trị lớn nhất của A là √3 khi x = 0

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Dấu bằng xảy ra khi 2x + 1 = 0 ⇔ x = -1/2

    Vậy giá trị lớn nhất của B là 6 khi x = -1/2.

Bài 2:

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    Vậy giá trị nhỏ nhất của biểu thức A là √2 - 12, đạt được khi x = 4.

    b)

Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

    ⇒ B ≥ √4 + 2010 = 2012

    Vậy giá trị nhỏ nhất của B là 2012, đạt được khi Chuyên đề Toán lớp 9 | Chuyên đề Lý thuyết và Bài tập Đại số và Hình học 9 có đáp án

Bài 3: Tìm giá trị lớn nhất của biểu thức  A = \frac{1}{{x - \sqrt x  + 1}}

Lời giải:

Điều kiện xác định x ≥ 0

Để A đạt giá trị lớn nhất thì x - \sqrt x  + 1 đạt giá trị nhỏ nhất

Có x - \sqrt x  + 1 = x - 2.\frac{1}{2}.\sqrt x  + \frac{1}{4} - \frac{1}{4} + 1 = {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{3}{4}

Lại có {\left( {\sqrt x  - \frac{1}{2}} \right)^2} \ge 0\forall x \ge 0 \Rightarrow {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x \ge 0

Dấu “=” xảy ra \Leftrightarrow \sqrt x  = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}

Minx - \sqrt x  + 1 = \frac{3}{4} \Leftrightarrow x = \frac{1}{4}

Vậy MaxA = \frac{4}{3} \Leftrightarrow x = \frac{1}{4}

Bài 4: Cho biểu thức A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}

a, Rút gọn A

b, Tìm giá trị lớn nhất của biểu thức P = A - 9\sqrt x

Lời giải:

a, A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}} với x > 0, x ≠ 1

= \left( {\frac{1}{{\sqrt x \left( {\sqrt x  - 1} \right)}} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}

= \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}.\frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x  + 1}} = \frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} = \frac{{\sqrt x  - 1}}{{\sqrt x }}

b,P = A - 9\sqrt x  = \frac{{\sqrt x  - 1}}{{\sqrt x }} - 9\sqrt x  = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) với x > 0, x ≠ 1

Với x > 0, x ≠ 1, áp dụng bất đẳng thức Cauchy có: \frac{1}{{\sqrt x }} + 9\sqrt x  \ge 2.\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x }  = 6

\Rightarrow  - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le  - 6 \Rightarrow 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le 1 - 6 =  - 5 \Leftrightarrow P \le  - 5

Dấu “=” xảy ra \Leftrightarrow \frac{1}{{\sqrt x }} = 9\sqrt x  \Leftrightarrow x = \frac{1}{9}(thỏa mãn)

Vậy maxP =  - 5 \Leftrightarrow x = \frac{1}{9}

Bài 5: Cho biểu thức A = \left( {\frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{\sqrt x }}{{2 + \sqrt x }}} \right) - \frac{{6 + \sqrt x }}{{4 - x}}với x ≥ 0, x ≠ 4

a, Rút gọn A

b, Tìm giá trị nhỏ nhất của A

Lời giải:

a, A=\left({\frac{{\sqrt x }}{{2 - \sqrt x }}+\frac{{\sqrt x }}{{2 + \sqrt x }}}\right)-\frac{{6 + \sqrt x }}{{4 - x}}với x ≥ 0, x ≠ 4

= \frac{{\sqrt x \left( {2 + \sqrt x } \right) + \sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}

= \frac{{2\sqrt x  + x + 2\sqrt x  - x}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}

= \frac{{4\sqrt x  - 6 - \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{3\sqrt x  - 6}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}

= \frac{{3.\left( {\sqrt x  - 2} \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{ - 3}}{{2 + \sqrt x }}

b, Có x \ge 0 \Rightarrow \sqrt x  \ge 0 \Rightarrow \sqrt x  + 2 \ge 2 \Rightarrow \frac{3}{{\sqrt x  + 2}} \le \frac{3}{2} \Rightarrow \frac{{ - 3}}{{\sqrt x  + 2}} \ge \frac{{ - 3}}{2}

Dấu “=” xảy ra ⇔ x = 0

Vậy minA=\frac{{ - 3}}{2}\Leftrightarrow x=0

Bài 6: Tìm giá trị lớn nhất của biểu thức A = \frac{1}{{x - \sqrt x  + 1}}

Gợi ý đáp án

Điều kiện xác định x ≥ 0

Để A đạt giá trị lớn nhất thì x - \sqrt x  + 1 đạt giá trị nhỏ nhất

Có x - \sqrt x  + 1 = x - 2.\frac{1}{2}.\sqrt x  + \frac{1}{4} - \frac{1}{4} + 1 = {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{3}{4}

Lại có {\left( {\sqrt x  - \frac{1}{2}} \right)^2} \ge 0\forall x \ge 0 \Rightarrow {\left( {\sqrt x  - \frac{1}{2}} \right)^2} + \frac{3}{4} \ge \frac{3}{4}\forall x \ge 0

Dấu “=” xảy ra \Leftrightarrow \sqrt x  = \frac{1}{2} \Leftrightarrow x = \frac{1}{4}

Minx - \sqrt x  + 1 = \frac{3}{4} \Leftrightarrow x = \frac{1}{4}

Vậy MaxA = \frac{4}{3} \Leftrightarrow x = \frac{1}{4}

Bài 7: Tìm giá trị lớn nhất của biểu thức:

a. E = \frac{1}{{\sqrt x  + 1}}

b. D = \frac{{\sqrt x  + 3}}{{\sqrt x  + 2}}

Gợi ý đáp án

a. Điều kiện xác định x \geqslant 0

Do \sqrt x  \geqslant 0 \Rightarrow \sqrt x  + 1 \geqslant 1 \Rightarrow \frac{1}{{\sqrt x  + 1}} \leqslant 1 \Rightarrow \max A = 1

Dấu “=” xảy ra khi và chỉ khi x = 0

Vậy GTLN của E bằng 1 khi x = 0

b. Điều kiện xác định x \geqslant 0

D = \frac{{\sqrt x  + 3}}{{\sqrt x  + 2}} = 1 + \frac{1}{{\sqrt x  + 2}}

Do \sqrt x  \geqslant 0 \Rightarrow \sqrt x  + 2 \geqslant 2 \Rightarrow \frac{1}{{\sqrt x  + 2}} \leqslant \frac{1}{2} \Rightarrow \max A = 1 + \frac{1}{2} = \frac{3}{2}

Dấu “=” xảy ra khi và chỉ khi x = 0

Vậy GTLN của D bằng 3/2 khi x = 0

Bài 8: Tìm giá trị lớn nhất của biểu thức: Q = {x^2}\sqrt {9 - {x^2}}

Gợi ý đáp án

Điều kiện xác định: x \in \left[ { - 3;3} \right]

Ta có:

\begin{matrix}
  {Q^2} = {x^4}\left( {9 - {x^2}} \right) \hfill \\
  {Q^2} = 4.\dfrac{{{x^2}}}{2}.\dfrac{{{x^2}}}{2}\left( {9 - {x^2}} \right) \hfill \\ 
\end{matrix}

Áp dụng bất đẳng thức Cauchy ta có:

\begin{matrix}
  {Q^2} \leqslant 4.\dfrac{{{{\left( {\dfrac{{{x^2}}}{2} + \dfrac{{{x^2}}}{2} + \left( {9 - {x^2}} \right)} \right)}^3}}}{{27}} = 4.27 \hfill \\
   \Rightarrow Q \leqslant 6\sqrt 3  \hfill \\
   \Rightarrow \max Q = 6\sqrt 3  \hfill \\ 
\end{matrix}

Dấu “=” xảy ra khi và chỉ khi x =  \pm \sqrt 6

Bài 9: Cho biểu thức A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}

a, Rút gọn A

b, Tìm giá trị lớn nhất của biểu thức P = A - 9\sqrt x

Gợi ý đáp án

Cách 1

a, A = \left( {\frac{1}{{x - \sqrt x }} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}} với x > 0, x ≠ 1

= \left( {\frac{1}{{\sqrt x \left( {\sqrt x  - 1} \right)}} + \frac{1}{{\sqrt x  - 1}}} \right):\frac{{\sqrt x  + 1}}{{{{\left( {\sqrt x  - 1} \right)}^2}}}

= \frac{{1 + \sqrt x }}{{\sqrt x \left( {\sqrt x  - 1} \right)}}.\frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x  + 1}} = \frac{{{{\left( {\sqrt x  - 1} \right)}^2}}}{{\sqrt x \left( {\sqrt x  - 1} \right)}} = \frac{{\sqrt x  - 1}}{{\sqrt x }}

b,P = A - 9\sqrt x  = \frac{{\sqrt x  - 1}}{{\sqrt x }} - 9\sqrt x  = 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) với x > 0, x ≠ 1

Với x > 0, x ≠ 1, áp dụng bất đẳng thức Cauchy có: \frac{1}{{\sqrt x }} + 9\sqrt x  \ge 2.\sqrt {\frac{1}{{\sqrt x }}.9\sqrt x }  = 6

\Rightarrow  - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le  - 6 \Rightarrow 1 - \left( {\frac{1}{{\sqrt x }} + 9\sqrt x } \right) \le 1 - 6 =  - 5 \Leftrightarrow P \le  - 5

Dấu “=” xảy ra \Leftrightarrow \frac{1}{{\sqrt x }} = 9\sqrt x  \Leftrightarrow x = \frac{1}{9}(thỏa mãn)

Vậy maxP =  - 5 \Leftrightarrow x = \frac{1}{9}

Cách 2: Thêm bớt rồi dùng bất đẳng thức Cauchy hoặc đánh giá dựa vào điều kiện đề bài.

Với điều kiện x > 0 và x ≠ 1 ta có:

P = A - 9\sqrt x  = \frac{{\sqrt x  - 1}}{{\sqrt x }} - 9\sqrt x  = 1 - \frac{1}{{\sqrt x }} - 9\sqrt x  = 1 - \left( {9\sqrt x  + \frac{1}{{\sqrt x }}} \right)

Theo bất đẳng thức Cauchy ra có:

9\sqrt x  + \frac{1}{{\sqrt x }} \geqslant 2\sqrt {9\sqrt x .\frac{1}{{\sqrt x }}}  \Leftrightarrow 9\sqrt x  + \frac{1}{{\sqrt x }} \geqslant 6

Như vậy P ≤ -5

Đẳng thức xảy ra khi và chỉ khi 9\sqrt x  = \frac{1}{{\sqrt x }} hay x = 1/9

Vậy giá trị lớn nhất của P là -5 khi và chỉ khi x = 1/9

Cách 3: Dùng miền giá trị để đánh giá

Với điều kiện x > 0 và x ≠ 1 ta có:

P = A - 9\sqrt x  = \frac{{\sqrt x  - 1}}{{\sqrt x }} - 9\sqrt x  = 1 - \frac{1}{{\sqrt x }} - 9\sqrt x (P < 1)

\begin{matrix}
   \Leftrightarrow P\sqrt x  = \sqrt x  - 1 - 9x \hfill \\
   \Leftrightarrow 9x + \left( {P - 1} \right)\sqrt x  + 1 = 0 \hfill \\
   \Leftrightarrow 9{\left( {\sqrt x } \right)^2} + \left( {P - 1} \right)\sqrt x  + 1 = 0\left( * \right) \hfill \\ 
\end{matrix}

Để tổn tại P thì phương trình (*) phải có nghiệm, tức là:

∆ = (P - 1)2 - 36 ≥ 0 ⇔ (P - 1)2 ≥ 36 ⇔ P - 1 ≤ -6 (Do P < 1) ⇔ P ≤ -5

Như vậy P ≤ -5 khi \sqrt x  = \frac{{ - \left( {P - 1} \right)}}{{2.9}} = \frac{{ - \left( { - 5 - 1} \right)}}{{2.9}} = \frac{1}{3} \Rightarrow x = \frac{1}{9}

Vậy giá trị lớn nhất của P là -5 khi và chỉ khi x = 1/9

Bài 10: Cho biểu thức A = \left( {\frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{\sqrt x }}{{2 + \sqrt x }}} \right) - \frac{{6 + \sqrt x }}{{4 - x}}với x ≥ 0, x ≠ 4

a, Rút gọn A

b, Tìm giá trị nhỏ nhất của A

Gợi ý đáp án

a, A = \left( {\frac{{\sqrt x }}{{2 - \sqrt x }} + \frac{{\sqrt x }}{{2 + \sqrt x }}} \right) - \frac{{6 + \sqrt x }}{{4 - x}}với x ≥ 0, x ≠ 4

= \frac{{\sqrt x \left( {2 + \sqrt x } \right) + \sqrt x \left( {2 - \sqrt x } \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}

= \frac{{2\sqrt x  + x + 2\sqrt x  - x}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} - \frac{{6 + \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}

= \frac{{4\sqrt x  - 6 - \sqrt x }}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{3\sqrt x  - 6}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}}

= \frac{{3.\left( {\sqrt x  - 2} \right)}}{{\left( {2 + \sqrt x } \right)\left( {2 - \sqrt x } \right)}} = \frac{{ - 3}}{{2 + \sqrt x }}

b, Có x \ge 0 \Rightarrow \sqrt x  \ge 0 \Rightarrow \sqrt x  + 2 \ge 2 \Rightarrow \frac{3}{{\sqrt x  + 2}} \le \frac{3}{2} \Rightarrow \frac{{ - 3}}{{\sqrt x  + 2}} \ge \frac{{ - 3}}{2}

Dấu “=” xảy ra ⇔ x = 0

Vậy minA = \frac{{ - 3}}{2} \Leftrightarrow x = 0

Xem thêm các dạng bài tập Toán liên quan khác:

20 bài tập Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức chứa căn (2024) mới nhất, có đáp án

30 bài tập Tìm Giá trị lớn nhất, nhỏ nhất của hàm số lượng giác cực hay 2024

20 Bài tập Ứng dụng của hàm số bậc hai chứng minh bất đẳng thức và tìm giá trị nhỏ nhất, lớn nhất (2024) cực hay, có đáp án

60 Bài tập về Giá trị lớn nhất và giá trị nhỏ nhất của hàm số (có đáp án năm 2024)

50 bài tập về giá trị lớn nhất, giá trị nhỏ nhất của phân thức (có đáp án 2024)

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!