Lý thuyết Toán 11 Bài 5: Phương trình lượng giác cơ bản (Chân trời sáng tạo)

Với tóm tắt lý thuyết Toán Toán 11 Bài 5: Phương trình lượng giác cơ bản sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11 Bài 5. Mời bạn đọc đón xem:

Lý thuyết Toán 11 Bài 5: Phương trình lượng giác cơ bản

I. Lý thuyết

1. Phương trình tương đương

- Hai phương trình được gọi là tương đương nếu chúng có cùng tập nghiệm.

- Để chỉ sự tương đương của các phương trình, người ta dùng kí hiệu “⇔”.

Ví dụ: Hai phương trình x2 – 9 = 0 và 3x2 – 27 = 0 có cùng tập nghiệm {–3; 3} nên hai phương trình này tương đương.

2. Phương trình sin x = m

Xét phương trình sin x = m.

• Nếu |m| > 1 thì phương trình vô nghiệm.

• Nếu |m| ≤ 1 thì phương trình có nghiệm:

x = α + k2π, k ∈ ℤ

và x = π – α + k2π, k ∈ ℤ,

với α là góc thuộc [π2;π2] sao cho sin α = m.

Chú ý:

Một số trường hợp đặc biệt:

• sin x = 1 ⇔ x=π2+k2π,  k;              

• sin x = −1 ⇔ x=π2+k2π,  k;

• sin x = 0 ⇔ x = kπ,  k.

Ta có:

• sin u = sin v ⇔ u = v + k2π, k ∈ ℤ hoặc u = π – v + k2π, k ∈ ℤ.

• sin x = sin a° ⇔ x = a° + k360°, k ∈ ℤ hoặc x = 180° − a° + k360°, k ∈ ℤ.

Ví dụ: sinx=32x=π3+k2πx=2π3+k2π  k.

3. Phương trình cos x = m

Xét phương trình cos x = m.

• Nếu |m| > 1 thì phương trình vô nghiệm.

• Nếu |m| ≤ 1 thì phương trình có nghiệm:

x = α + k2π, k ∈ ℤ

và x = – α + k2π, k ∈ ℤ,

với α là góc thuộc [0; π] sao cho cos α = m.

Chú ý:

Một số trường hợp đặc biệt:

• cos x = 1 ⇔ x = k2π, k ∈ ℤ;  

• cos x = −1 ⇔ x = π + k2π, k ∈ ℤ;

• cos x = 0 ⇔ x=π2+kπ,  k.

Ta có:

• cos u = cos v ⇔ u = v + k2π, k ∈ ℤ hoặc u = –v + k2π, k ∈ ℤ.

• cos x = cos a° ⇔ x = a° + k360°, k ∈ ℤ hoặc x = −a° + k360°, k ∈ ℤ.

Ví dụ: cos x = cos 15° ⇔ x = 15° + k360° hoặc x = −15° + k360°, k ∈ ℤ.

4. Phương trình tan x = m

Với mọi số thực m, phương trình tan x = m có nghiệm

x = α + kπ, k ∈ ℤ,

với α là góc thuộc π2;π2 sao cho tan α = m.

Chú ý: tan x = tan a° ⇔ x = a° + k180°, k ∈ ℤ.

Ví dụ: tan x = 0 ⇔ x = kπ, k ∈ ℤ.

5. Phương trình cot x = m

Với mọi số thực m, phương trình cot x = m có nghiệm

x = α + kπ, k ∈ ℤ,

với α là góc thuộc (0; π) sao cho cot α = m.

Chú ý: cot x = cot a° ⇔ x = a° + k.180°, k ∈ ℤ.

Ví dụ: cot x = 1 ⇔ x=π4+kπ,  k.

6. Giải phương trình lượng giác bằng máy tính cầm tay

Ấn liên tiếp các phím SHIFT, sin/cos/tan và giá trị lượng giác của góc lượng giác bất kỳ để tìm ra góc lượng giác đó theo đơn vị radian hoặc theo đơn vị độ.

Chú ý: để giải phương trình cot x = m (m ≠ 0), ta giải phương trình tanx=1m.

II. Bài tập Phương trình lượng giác

Bài 1. Giải các phương trình lượng giác sau:

a) 2sin2x + 2sinx.cosx – 5cos2x = 0

b) 3sinxcosx=2

Hướng dẫn giải

a) 2sin2x+2sinx.cosx5cos2x=0

⇔ 2tan2x+3tanx5=0

Phương trình lượng giác (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Vậy phương trình đã cho có nghiệm là x=π4+kπ hoặc x1,2+kπ (k ∈ ℤ).

b) 3sinxcosx=2

⇔ 32sinx12cosx=22

⇔ sinx.cosπ6cosx.sinπ6=22

⇔ sinxπ6=sinπ4

Phương trình lượng giác (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Vậy phương trình đã cho có nghiệm là x=5π12+2kπ hoặc x=11π12+2kπ (k ∈ ℤ).

Bài 2. Giải phương trình: cos3x.tan5x = sin7x.

Hướng dẫn giải

Điều kiện cos 5x ≠ 0

Khi đó phương trình đã cho trở thành

2sin5x.cos3x = 2sin7x.cos5x

⇔ sin8x = sin12x

Phương trình lượng giác (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

• Với x=kπ2 thì ta có:

cos5x=cos5kπ2=coskπ2+2kπ=coskπ20

⇔ k = 2m (m ∈ ℤ)

• Với x=π20+kπ10 thì ta có:

cos5x=cosπ4+kπ20

 Vậy phương trình đã cho có nghiệm là x=mπ;  x=π20+kπ10 (m, k ∈ ℤ).

Bài 3. Tìm x ∈ [0; 14] sao cho: cos3x – 4cos2x + 3cos x – 4 = 0. (1)

Hướng dẫn giải

Ta có: cos3x = 4cos3x – 3cosx

(1) ⇔ cos3x + 3cos x – 4(1 + cos2x) = 0

⇔ 4cos3x – 8cos2x = 0

⇔ 4cos3x.(cos x – 2) = 0

⇔ cos x = 0

⇔ x=π2+kπ (k ∈ ℤ)

Vì x ∈ [0; 14] ⇒ {xπ2;3π2;5π2;7π2.}

Vậy {xπ2;3π2;5π2;7π2.}

Xem thêm các bài tóm tắt lý thuyết Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 3: Các công thức lượng giác

Lý thuyết Bài 4: Hàm số lượng giác và đồ thị

Tổng hợp lý thuyết Toán 11 Chương 1

Lý thuyết Bài 1: Dãy số

Lý thuyết Bài 2: Cấp số cộng

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!