Lý thuyết Toán 11 Bài 4: Hàm số lượng giác và đồ thị (Chân trời sáng tạo)

Với tóm tắt lý thuyết Toán Toán 11 Bài 4: Hàm số lượng giác và đồ thị sách Chân trời sáng tạo hay, chi tiết cùng với bài tập tự luyện chọn lọc giúp học sinh nắm vững kiến thức trọng tâm để học tốt môn Toán 11 Bài 4. Mời bạn đọc đón xem:

Lý thuyết Toán 11 Bài 4: Hàm số lượng giác và đồ thị

I. Lý thuyết

1. Hàm số lượng giác

Hàm số sin là quy tắc đặt tương ứng mỗi số thực x với số thực sin x, kí hiệu y = sin x.

Hàm số côsin là quy tắc đặt tương ứng mỗi số thực x với số thực cos x, kí hiệu          y = cos x.

Hàm số tang là hàm số được xác định bởi công thức

y=sinxcosx với xπ2+kπ  (k), kí hiệu y = tan x.

Hàm số côtang là hàm số được xác định bởi công thức

y=cosxsinx với x ≠ kπ (k ∈ ℤ), kí hiệu y = cot x.

Chú ý:

• Tập xác định của hàm số y = sin x và y = cos x là ℝ.

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

2. Hàm số chẵn, hàm số lẻ, hàm số tuần hoàn

2.1. Hàm số chẵn, hàm số lẻ

- Hàm số y = f(x) với tập xác định được gọi là hàm số chẵn nếu với mọi x ∈ ta có    – x ∈ và f(−x) = f(x).

- Hàm số y = f(x) với tập xác định được gọi là hàm số lẻ nếu với mọi x ∈ ta có              – x ∈ và f(−x) = −f(x).

Chú ý:

• Đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng.

• Đồ thị của hàm số lẻ nhận gốc tọa độ làm tâm đối xứng.

Ví dụ: Xét tính chẵn lẻ của hàm số y = f(x) = sin(2x + 1).

Ta có hàm số y = f(x) = sin(2x + 1) có tập xác định là ℝ. Với mọi x ∈ ℝ ta có –x ∈ ℝ và f(–x) = sin[2(–x) + 1] = sin(–2x + 1) = –sin(2x – 1).

Nhận thấy f(–x) ≠ f(x) và f(–x) ≠ –f(x).

Vậy hàm số y = sin(2x + 1) không phải hàm số chẵn, không phải hàm số lẻ.

2.2. Hàm số tuần hoàn

- Hàm số y = f(x) với tập xác định được gọi là hàm số tuần hoàn nếu tồn tại một số T khác 0 sao cho với mọi x ∈ ta có x ± T ∈ và f(x + T) = f(x).

- Số T dương nhỏ nhất thỏa mãn các điều kiện trên (nếu có) được gọi là chu kì của hàm số tuần hoàn y = f(x).

Chú ý:

• Đồ thị của hàm số tuần hoàn chu kì T được lặp lại trên từng đoạn giá trị của x có độ dài T.

• Các hàm số y = sin x và y = cos x là các hàm số tuần hoàn với chu kì 2π.

• Các hàm số y = tan x và y = cot x là các hàm số tuần hoàn với chu kì π.

3. Đồ thị của các hàm số lượng giác

3.1. Hàm số y = sin x

Hàm số y = sin x có tập xác định là ℝ, tập giá trị là [−1; 1] và có các tính chất sau:

- Hàm số tuần hoàn với chu kì 2π.

- Hàm số lẻ, có đồ thị đối xứng qua gốc tọa độ O.

- Hàm số đồng biến trên các khoảng (π2+2kπ;  π2+2kπ  )(k) và nghịch biến trên các khoảng (π2+2kπ;  3π2+2kπ  )(k.)

Đồ thị của hàm số y = sin x trên ℝ như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Vì y = sin x là hàm số lẻ nên để vẽ đồ thị của nó trên đoạn [−π; π], ta có thể vẽ trên đoạn [0; π], sau đó lấy đối xứng qua gốc tọa độ.

3.2. Hàm số y = cos x

Hàm số y = cos x có tập xác định là ℝ, tập giá trị là [−1; 1] và có các tính chất sau:

- Hàm số tuần hoàn với chu kì 2π.

- Hàm số chẵn, có đồ thị đối xứng qua trục Oy.

- Hàm số đồng biến trên các khoảng (π+2kπ;  2kπ  )(k) và nghịch biến trên các khoảng (2kπ;  π+2kπ  )(k.)

Đồ thị của hàm số y = cos x trên ℝ như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Vì y = cos x là hàm số chẵn nên để vẽ đồ thị của nó trên đoạn [−π; π], ta có thể vẽ trên đoạn [0; π], sau đó lấy đối xứng qua trục tung.

3.3. Hàm số y = tan x

Hàm số y = tan x có tập xác định là Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo và có các tính chất sau:

- Hàm số tuần hoàn với chu kì π.

- Hàm số lẻn, có đồ thị đối xứng qua gốc tọa độ O.

- Hàm số đồng biến trên các khoảng (π2+kπ;  π2+kπ  k.)

Đồ thị của hàm số y = tan x trên Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Chú ý:

• Vì y = tan x là hàm số lẻ nên để vẽ đồ thị của nó trên khoảng (π2;π2,) ta có thể vẽ trên nửa khoảng [0;π2,) sau đó lấy đối xứng qua gốc tọa độ.

3.4. Hàm số y = cot x

Hàm số y = cot x có tập xác định là Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo và có các tính chất sau:

- Hàm số tuần hoàn với chu kì π.

- Hàm số lẻn, có đồ thị đối xứng qua gốc tọa độ O.

- Hàm số nghịch biến trên các khoảng (kπ;  π+kπ  )(k.)

Đồ thị của hàm số y = cot x trên Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

II. Bài tập Hàm số lượng giác và đồ thị

Bài 1. Xét tính chẵn lẻ của các hàm số sau:

a) fx=x2sinx+tanx.

b) f(x) = |x|.sin x.

Hướng dẫn giải

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

⇔ sin 2x ≠ 0 ⇔ 2x ≠ kπ ⇔ xkπ2, k ∈ ℤ.

Vậy hàm số f(x) xác định trên Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo là tập đối xứng.

Ta có: fx=x2sinx+tanx=x2sinx+tanx=fx

Vậy hàm số fx=x2sinx+tanx là hàm số lẻ.

b) Hàm số f(x) xác định trên D = ℝ là tập đối xứng

Ta có: f(−x) = |−x|.sin (−x) = |x|.sin x = −f(x).

Vậy hàm số f(x) = |x|.sin x là hàm số lẻ.

Bài 2. Tìm tập xác định của hàm số: y=1+cosx1cosx.

Hướng dẫn giải

Hàm số y=1+cosx1cosx xác định ⇔Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Vì 1cosx1,  x nên Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

⇒ 1+cosx1cosx0,   1cosx0.

Do đó y xác định khi và chỉ khi 1cosx0 ⇔ cos x ≠ 1 ⇔ x ≠ k2π.

Vậy tập xác định của hàm số là D = ℝ \ {k2π, k ∈ ℤ}.

Bài 3. Dựa vào đồ thị của hàm số y = sin x, vẽ đồ thị của hàm số y = |sin x|.

Hướng dẫn giải

Ta biết đồ thị hàm số y = sin x có dạng như sau:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Với hàm số y = |sin x| ta có:

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Từ dồ thị hàm số y = sin x ta có thể suy ra đồ thị hàm số y = |sin x| bằng cách:

- Giữ nguyên phần đồ thị nằm phía trên trục Ox (sin x > 0).

- Lấy đối xứng phần đồ thị nằm phía dưới Ox qua Ox.

Như vậy, ta được đồ thị hàm số y = |sin x| có dạng như sau (nét liền).

Hàm số lượng giác và đồ thị (Lý thuyết Toán lớp 11) | Chân trời sáng tạo

Xem thêm các bài tóm tắt lý thuyết Toán 11 Chân trời sáng tạo hay, chi tiết khác:

Lý thuyết Bài 2: Giá trị lượng giác của một góc lượng giác

Lý thuyết Bài 3: Các công thức lượng giác

Lý thuyết Bài 5: Phương trình lượng giác cơ bản

Tổng hợp lý thuyết Toán 11 Chương 1

Lý thuyết Bài 1: Dãy số

 

Bình luận (0)

Đăng nhập để có thể bình luận

Chưa có bình luận nào. Bạn hãy là người đầu tiên cho tôi biết ý kiến!