Lý thuyết Toán 11 Bài 2: Giới hạn của hàm số
1. Giới hạn hữu hạn của hàm số tại một điểm
1.1. Định nghĩa
Cho khoảng K chứa điểm x0 và hàm số f(x) xác định trên K hoặc trên K\{x0}. Hàm số f(x) có giới hạn là số L khi x dần tới x0 nếu với dãy số (xn) bất kì, xn ∈ K\{x0} và xn → x0 thì f(xn) → L.
Kí hiệu hay f(x) → L khi x → x0.
Nhận xét: ; , với c là hằng số.
Chú ý: Hàm số f(x) có thể không xác định tại x = x0 nhưng vẫn tồn tại giới hạn của hàm số đó khi x dần tới x0.
Ví dụ 1. Xét hàm số (x ≠ 2). Chứng minh rằng
Hướng dẫn giải
Giả sử (xn) là dãy bất kì, thỏa mãn xn ≠ 2 và lim xn = 2.
.
1.2. Phép toán trên giới hạn hữu hạn của hàm số
.
Ví dụ 2. Tìm
a) ;
b) .
Hướng dẫn giải
.
1.3. Giới hạn một phía
• Cho hàm số y = f(x) xác định trên khoảng (a; x0).
Số L được gọi là giới hạn bên trái của hàm số y = f(x) khi x dần tới x0 nếu với dãy số (xn) bất kì, a < xn < x0 và xn → x0, ta có f(xn) → L.
Kí hiệu .
• Cho hàm số y = f(x) xác định trên khoảng (x0; b).
Số L được gọi là giới hạn bên phải của hàm số y = f(x) khi x dần tới x0 nếu với dãy số (xn) bất kì, x0 < xn < b và xn → x0, ta có f(xn) → L.
Kí hiệu .
• khi và chỉ khi .
Ví dụ 3.
.
Hướng dẫn giải
.
2. Giới hạn hữu hạn của hàm số tại vô cực
– Cho hàm số y = f(x) xác định trên khoảng (a; +∞).
Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới dương vô cực nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → L.
Kí hiệu hay f(x) → L khi x → +∞.
– Cho hàm số y = f(x) xác định trên khoảng (–∞; a).
Ta nói hàm số y = f(x) có giới hạn là số L khi x dần tới âm vô cực nếu với dãy số (xn) bất kì, xn < a và xn → –∞, ta có f(xn) → L.
Kí hiệu hay f(x) → L khi x → –∞.
Chú ý:
+ Với c, k là các hằng số và k nguyên dương, ta luôn có:
+ Các phép toán trên giới hạn hữu hạn của hàm số khi x → x0 vẫn còn đúng khi x → +∞ hoặc x → –∞.
Ví dụ 4. Tìm .
Hướng dẫn giải
.
3. Giới hạn vô cực (một phía) của hàm số tại một điểm
– Cho hàm số y = f(x) xác định trên khoảng (a; +∞).
Ta nói hàm số y = f(x) có giới hạn là +∞ khi x → a+ nếu với dãy số (xn) bất kì, xn > a và xn → a, ta có f(xn) → +∞.
Kí hiệu hay f(x) → +∞ khi x → a+.
– Các trường hợp ; được định nghĩa tương tự.
Chú ý: Ta có các giới hạn cơ bản sau:
.
Ví dụ 5. Tính .
Hướng dẫn giải
Ta có .
Vậy .
4. Giới hạn vô cực của hàm số tại vô cực
– Cho hàm số y = f(x) xác định trên khoảng (a; +∞).
Ta nói hàm số y = f(x) có giới hạn là +∞ khi x dần tới dương vô cực nếu với dãy số (xn) bất kì, xn > a và xn → +∞, ta có f(xn) → +∞.
Kí hiệu hay f(x) →+∞ khi x → +∞.
– Các trường hợp được định nghĩa tương tự.
Chú ý: Ta có ba giới hạn cơ bản sau:
• với k là số nguyên dương.
• k là số nguyên dương chẵn.
• k là số nguyên dương lẻ.
Ví dụ 6. ; .
Bài tập Giới hạn của hàm số
Bài 1. Cho f(x) =1 – x và g(x) = 2x3. Tính các giới hạn sau:
.
Hướng dẫn giải
.
Bài 2. Sử dụng định nghĩa tìm giới hạn của hàm số:
a) ;
b) .
Hướng dẫn giải
a) Giả sử (xn) là một dãy bất kì và xn → 1 khi n → +∞.
Khi đó .
Vậy .
b) Giả sử (xn) là một dãy bất kì thỏa mãn xn ≠ –2 và xn → –2 khi n → +∞.
Vậy .
Bài 3. Tìm giới hạn của các hàm số sau:
a) ;
b) ;
c)
Hướng dẫn giải
Xem thêm các bài tóm tắt lý thuyết Toán 11 Cánh diều hay, chi tiết khác:
Tổng hợp lý thuyết Toán 11 Chương 2
Lý thuyết Bài 1: Giới hạn của dãy số
Lý thuyết Bài 3: Hàm số liên tục
Tổng hợp lý thuyết Toán 11 Chương 3
Lý thuyết Bài 1: Đường thẳng và mặt phẳng trong không gian