Trắc nghiệm Toán 10 Bài 21. Đường tròn trong mặt phẳng toạ độ có đáp án
Trắc nghiệm Toán 10 Bài 21. Đường tròn trong mặt phẳng toạ độ có đáp án
-
131 lượt thi
-
15 câu hỏi
-
0 phút
Danh sách câu hỏi
Câu 1:
Tọa độ tâm I và bán kính R của đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\] là:
Đáp án đúng là: B
Ta có: \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 3} \right)^2} = 16\]\[ \Rightarrow \]Tâm I (1; -3), bán kính R = \[\sqrt {16} \]= 4.
Câu 2:
Gọi I(a; b) là tâm của đường tròn \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]. Tính S = 2a + b:
Đáp án đúng là: D
Ta có: \[\left( C \right):{x^2} + {\left( {y + 4} \right)^2} = 5\]
⇒ a = 0, b = -4
⇒ S = 2a + b = 2.0 + (-4) = -4.
Câu 3:
Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8\]. Tìm I và tính S = 3.R.
Đáp án đúng là: C
Ta có: \[\left( C \right):{\left( {x + 1} \right)^2} + {y^2} = 8 \Rightarrow \] \[I\left( { - 1;0} \right),\,R = \sqrt 8 = 2\sqrt 2 \].
3.R = 6\[\sqrt 2 \].
Câu 4:
Gọi I và R lần lượt là tâm và bán kính của đường tròn \[\left( C \right):{x^2} + {y^2} = 9\]. Tìm I và tính S = \[{R^3}\].
Đáp án đúng là: D
Ta có: \(\left( C \right):{x^2} + {y^2} = 9\)\( \Rightarrow I\left( {0;0} \right),\,\,R = \sqrt 9 = 3.\)
Suy ra S = \[{R^3}\]= 27.
Câu 5:
Đường tròn \[\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\] có tâm I, bán kính R lần lượt là:
Đáp án đúng là: C
Ta có: \[\left( C \right):{x^2} + {y^2} - 6x + 2y + 6 = 0\]\[ \Rightarrow a = \frac{{ - 6}}{{ - 2}} = 3\]; \[b = \frac{2}{{ - 2}} = - 1\]; c = 6
\[ \Rightarrow \]I (3; -1) và \[R = \sqrt {{3^2} + {{\left( { - 1} \right)}^2} - 6} = \]2.
Câu 6:
Đường tròn có tâm trùng với gốc tọa độ, bán kính R = 1 có phương trình là:
Đáp án đúng là: B
Đường tròn (C) phải thoả mãn hai điều kiện sau:
\[\left( C \right):\left\{ \begin{array}{l}I\left( {0;0} \right)\\R = 1\end{array} \right.\] suy ra chỉ có phương trình \[{x^2} + {y^2} = 1\] thoả mãn yêu cầu.
Câu 7:
Đường tròn có tâm I (1; 2), bán kính R = 3 có phương trình là:
Đáp án đúng là: A
Đường tròn có tâm I (1; 2), bán kính R = 3 có phương trình là:
\[{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} = 9\]
\[ \Leftrightarrow {x^2} + {y^2} - 2x - 4y - 4 = 0\]
Câu 8:
Đường tròn (C) có tâm I (1; -5) và đi qua O (0; 0) có phương trình là:
Đáp án đúng là: C
Ta có: Bán kính của đường tròn R = OI = \[\sqrt {{{(1 - 0)}^2} + {{( - 5 - 0)}^2}} = \sqrt {26} \]
Phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {1; - 5} \right)\\R = OI = \sqrt {26} \end{array} \right.\] là: \[{\left( {x - 1} \right)^2} + {\left( {y + 5} \right)^2} = 26\]
Câu 9:
Đường tròn (C) có tâm I (-2; 3) và đi qua M (2; -3) có phương trình là:
Đáp án đúng là: D
Ta có: Bán kính của đường tròn:
R = IM = \[\sqrt {{{\left( {2 + 2} \right)}^2} + {{\left( { - 3 - 3} \right)}^2}} = \sqrt {52} \]
Vậy phương trình đường tròn \[\left( C \right):\left\{ \begin{array}{l}I\left( { - 2;3} \right)\\R = \sqrt {52} \end{array} \right.\]là: \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y - 3} \right)^2} = 52.\]
hay \[\left( C \right):{x^2} + {y^2} + 4x - 6y - 39 = 0\].
Câu 10:
Đường tròn đường kính AB với A (3; -1), B (1; -5) có phương trình là:
Đáp án đúng là: D
Đường tròn có đường kính AB nên tâm I của đường tròn là trung điểm của AB:
\( \Rightarrow \left\{ \begin{array}{l}{x_I} = \frac{{3 + 1}}{2} = 2\\{y_I} = \frac{{ - 1 + \left( { - 5} \right)}}{2} = - 3\end{array} \right.\)
Và bán kính của đường tròn là:
R = \[\frac{1}{2}AB\] = \[\frac{1}{2}\sqrt {{{\left( {1 - 3} \right)}^2} + {{\left( { - 5 + 1} \right)}^2}} \]= \[\sqrt 5 \]
Khi đó phương trình đường tròn\[\left( C \right):\left\{ \begin{array}{l}I\left( {2; - 3} \right)\\R = \sqrt 5 \end{array} \right.\] là:
\[\left( C \right):{\left( {x - 2} \right)^2} + {\left( {y + 3} \right)^2} = 5.\]
Câu 11:
Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{\left( {x + 2} \right)^2} + {\left( {y + 2} \right)^2} = 25\] tại trung điểm của A (1; 3) và B (3; -1) là:
Đáp án đúng là: D
Gọi M là trung điểm của A và B, ta có: M \[\left( {\frac{{1 + 3}}{2};\frac{{3 + ( - 1)}}{2}} \right)\]= (2; 1).
Đường tròn (C) có tâm I (-2; -2) nên tiếp tuyến tại M có VTPT là \[\vec n = \overrightarrow {IM} = \left( {4;3} \right)\] nên có phương trình là: 4.(x – 2) + 3.(y – 1) = 0\[ \Leftrightarrow \]4x + 3y – 11 = 0.
Câu 12:
Cho đường tròn \[\left( C \right):{\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} = 8\]. Viết phương trình tiếp tuyến d của (C) tại điểm A (3; -4).
Đáp án đúng là: C
Đường tròn (C) có tâm I (1; -2) nên tiếp tuyến tại A có VTPT là
\[\vec n = \overrightarrow {IA} = \](2; -2) = 2(1; -1)
Nên có phương trình là: 1(x - 3) - 1.(y + 4) = 0\[ \Leftrightarrow \]x - y - 7 = 0.
Câu 13:
Phương trình tiếp tuyến d của đường tròn \[\left( C \right):{x^2} + {y^2} - 3x - y = 0\] tại điểm đối xứng với M (-1; -1) qua trục Oy là:
Đáp án đúng là: D
Gọi N là điểm đối xứng của M qua Oy, ta có: N (1; -1).
Đường tròn (C) có tâm \[I\left( {\frac{3}{2};\frac{1}{2}} \right)\] nên tiếp tuyến tại N có VTPT là
\[\vec n = \overrightarrow {IN} = \left( { - \frac{1}{2}; - \frac{3}{2}} \right) = - \frac{1}{2}\left( {1;3} \right),\]
Nên có phương trình là: 1(x - 1) +3(y + 1) = 0\[ \Leftrightarrow \]x + 3y + 2 = 0.
Câu 14:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{\left( {x - 3} \right)^2} + {\left( {y + 1} \right)^2} = 5\], biết tiếp tuyến song song với đường thẳng d: 2x + y + 7 = 0.
Đáp án đúng là: B
Đường tròn (C) có tâm I(3; -1), R = \[\sqrt 5 \].
Vì tiếp tuyến của đường tròn (C) song song với đường thẳng d: 2x + y + 7 = 0 nên tiếp tuyến có dạng \[\Delta \]: 2x + y + c = 0 (c ≠ 7).
Ta có:
Bán kính của đường tròn \[R = d\left( {I;\Delta } \right) \Leftrightarrow \]\[\frac{{\left| {c + 5} \right|}}{{\sqrt 5 }} = \sqrt 5 \]
\[ \Leftrightarrow \]\[\left| {c + 5} \right| = 5\]\[ \Leftrightarrow \]\[\left[ \begin{array}{l}c + 5 = 5\\c + 5 = - 5\end{array} \right.\]
\[ \Leftrightarrow \left[ \begin{array}{l}c = 0\\c = - 10\end{array} \right.\]
suy ra\[\Delta \]:2x + y = 0 hoặc \[\Delta \]:2x + y – 10 = 0.
Câu 15:
Viết phương trình tiếp tuyến của đường tròn \[\left( C \right):{x^2} + {y^2} + 4x + 4y - 17 = 0\], biết tiếp tuyến song song với đường thẳng d: 3x – 4y – 2018 = 0.
Đáp án đúng là: A
Ta có: Đường tròn (C) có tâm I(-2; -2), R = 5 và tiếp tuyến có dạng
\[\Delta \]: 3x – 4y + c = 0 (c ≠ -2018)
Bán kính đường tròn: \[R = d\left( {I;\Delta } \right)\] \[ \Leftrightarrow \frac{{\left| {c + 2} \right|}}{5} = 5\]
\[ \Leftrightarrow \left| {c + 2} \right| = 25\]\[ \Leftrightarrow \left[ \begin{array}{l}c + 2 = 25\\c + 2 = - 25\end{array} \right.\]\[ \Leftrightarrow \left[ \begin{array}{l}c = 23\\c = - 27\end{array} \right.\]
suy ra: \[\Delta \]:3x – 4y + 23 = 0 hoặc \[\Delta \]: 3x – 4y – 27 = 0.