Hoặc
16 câu hỏi
Bài 9.12 trang 87 Toán 10 Tập 2. Màu hạt của đậu Hà Lan có hai kiểu hình là màu vàng và màu xanh tương ứng với hai loại gene là gene trội A và gene lặn a. Hình dạng hạt của đậu Hà Lan có hai kiểu hình là hạt trơn và hạt nhăn tương ứng với hai loại gene là gene trội B và gene lặn b. Biết rằng, cây con lấy ngẫu nhiên một gene từ cây bố và một gene từ cây mẹ. Phép thử là cho lai hai loại đậu Hà Lan,...
Bài 9.11 trang 87 Toán 10 Tập 2. Gieo lần lượt hai con xúc xắc cân đối. Tính xác suất để ít nhất một con xúc xắc xuất hiện mặt 6 chấm.
Bài 9.10 trang 87 Toán 10 Tập 2. Trên một phố có hai quán ăn X, Y. Ba bạn Sơn, Hải, Văn mỗi người chọn ngẫu nhiên một quán ăn. a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu. b) Tính xác suất của biến cố “Hai bạn vào quán X, bạn còn lại vào quán Y”.
Bài 9.9 trang 86 Toán 10 Tập 2. Gieo liên tiếp một con xúc xắc cân đối và một đồng xu cân đối. a) Vẽ sơ đồ hình cây mô tả các phần tử của không gian mẫu. b) Tính xác suất của các biến cố sau. F. “Đồng xu xuất hiện mặt ngửa”; G. “Đồng xu xuất hiện mặt sấp hoặc số chấm xuất hiện trên con xúc xắc là 5”.
Bài 9.8 trang 86 Toán 10 Tập 2. Một chiếc hộp đựng 6 viên bi trắng, 4 viên bi đỏ và 2 viên bi đen. Chọn ngẫu nhiên ra 6 viên bi. Tính xác suất để trong 6 viên bi đó có 3 viên bi trắng, 2 viên bi đỏ và 1 viên bi đen.
Bài 9.7 trang 86 Toán 10 Tập 2. Một hộp đựng các tấm thẻ đánh số 10; 11; .; 20. Rút ngẫu nhiên từ hộp hai tấm thẻ. Tính xác suất của các biến cố sau. a) C. “Cả hai thẻ rút được đều mang số lẻ”; b) D. “Cả hai thẻ rút được đều mang số chẵn”.
Bài 9.6 trang 86 Toán 10 Tập 2. Chọn ngẫu nhiên một gia đình có ba con và quan sát giới tính của ba người con này. Tính xác suất của các biến cố sau. a) A. “Con đầu là gái”; b) B. “Có ít nhất một người con trai”.
Vận dụng trang 86 Toán 10 Tập 2. Giải bài toán trong tình huống mở đầu.
Luyện tập 4 trang 86 Toán 10 Tập 2. Cho ba hộp A, B, C. Hộp A có chứa ba thẻ mang số 1, số 2, số 3. Hộp B chứa hai thẻ mang số 2 và số 3. Hộp C chứa hai thẻ mang số 1 và số 2. Từ mỗi hộp ta rút ra ngẫu nhiên một thẻ. a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu. b) Gọi M là biến cố. “Trong ba thẻ rút ra có ít nhất một thẻ số 1”. Biến cố M¯ là tập con nào của không gian mẫu? c) Tính...
HĐ3 trang 85 Toán 10 Tập 2. Cho E là biến cố và Ω là không gian mẫu. Tính n(E¯) theo n(Ω) và n(E).
Luyện tập 3 trang 85 Toán 10 Tập 2. Trong một cuộc tổng điều tra dân số, điều tra viên chọn ngẫu nhiên một gia đình có ba người con và quan tâm giới tính của ba người con này. a) Vẽ sơ đồ hình cây để mô tả các phần tử của không gian mẫu. b) Giả thiết rằng khả năng sinh con trai và khả năng sinh con gái là như nhau. Tính xác suất để gia đình đó có một con trai và hai con gái.
Luyện tập 2 trang 85 Toán 10 Tập 2. Trở lại trò chơi “Vòng quay may mắn” ở HĐ2. Tính xác suất để người chơi nhận được loại xe 110 cc có màu trắng hoặc màu xanh.
HĐ2 trang 84 Toán 10 Tập 2. Trong trò chơi "Vòng quay may mắn", người chơi sẽ quay hai bánh xe. Mũi tên ở bánh xe thứ nhất có thể dừng ở một trong hai vị trí. Loại xe 50 cc và Loại xe 110 cc. Mũi tên ở bánh xe thứ hai có thể dừng ở một trong bốn vị trí. màu đen, màu trắng, màu đỏ và màu xanh. Vị trí của mũi tên trên hai bánh xe sẽ xác định người chơi nhận được loại xe nào, màu gì. Phép thử T là qu...
Luyện tập 1 trang 84 Toán 10 Tập 2. Một tổ trong lớp 10B có 12 học sinh, trong đó có 7 học sinh nam và 5 học sinh nữ. Giáo viên chọn ngẫu nhiên 6 học sinh trong tổ để kiểm tra vở bài tập Toán. Tính xác suất để trong 6 học sinh được chọn số học sinh nữ bằng số học sinh nam.
HĐ1 trang 83 Toán 10 Tập 2. Theo định nghĩa cổ điển của xác suất để tính xác suất của biến cố F. “Bạn An trúng giải độc đắc” và biến cố G. “Bạn An trúng giải nhất” ta cần xác định n(Ω), n(F) và n(G). Liệu có thể tính n(Ω), n(F) và n(G) bằng cách liệt kê ra hết các phần tử của Ω, F và G rồi kiểm đếm được không.
Mở đầu trang 83 Toán lớp 10 Tập 2. Trở lại tình huống mở đầu trong Bài 26. Hãy tính xác suất trúng giải độc đắc, giải nhất của bạn An khi chọn bộ số {5; 13; 20; 31; 32; 35}.
86.7k
53.8k
44.8k
41.7k
40.3k
37.5k
36.5k
35.3k
34k
32.5k