Giải Toán 10 Bài 3: Các số liệu đặc trưng đo mức độ phân tán cho mẫu số liệu không ghép nhóm
Kết quả làm bài kiểm tra môn Toán của bạn nào đồng đều hơn?
Lời giải:
Sau bài học này, ta giải quyết được bài toán trên như sau:
Số trung bình cộng điểm kiểm tra của bạn Dũng là:
Phương sai mẫu số liệu điểm kiểm tra của bạn Dũng là:
Số trung bình cộng điểm kiểm tra của bạn Huy là:
Phương sai mẫu số liệu điểm kiểm tra của bạn Huy là:
Vì 0,4 < 2 nên nên bạn Huy có kết quả kiểm tra môn Toán đồng đều hơn bạn Dũng.
I. Khoảng biến thiên, khoảng tứ phân vị
Hoạt động 1 trang 35 Toán lớp 10 Tập 2: Kết quả của 11 lần đo được thống kê trong mẫu số liệu sau:
a) Tìm hiệu giữa số đo lớn nhất và số đo nhỏ nhất.
b) Sắp xếp các số liệu của mẫu (1) theo thứ tự tăng dần. Tìm các giá trị Q1, Q2, Q3 là tứ phân vị của mẫu đó. Sau đó, tìm hiệu Q3 – Q1.
Lời giải:
Số trung bình cộng của mẫu số liệu (3) là:
a) Tính các độ lệch sau: (8 – 7); (6 – 7); (7 – 7); (5 – 7); (9 – 7).
b) Tính bình phương các độ lệch và tính trung bình cộng của chúng.
Lời giải:
a) Ta tính được các độ lệch là: (8 – 7) = 1; (6 – 7) = – 1; (7 – 7) = 0; (5 – 7) = – 2; (9 – 7) = 2.
b) Bình phương các độ lệch là: (8 – 7)2 = 12 = 1; (6 – 7)2 = (– 1)2 = 1; (7 – 7)2 = 02 = 0; (5 – 7) = (– 2)2 = 4; (9 – 7)2 = 22 = 4.
Trung bình cộng của bình phương các độ lệch là:
Tính phương sai của mẫu (5) và mẫu (6). Từ đó cho biết cự li chạy nào có kết quả đồng đều hơn.
Lời giải:
Số trung bình cộng của mẫu số liệu (5) là:
Phương sai của mẫu số liệu (5) là:
= 9,1584.
Số trung bình cộng của mẫu số liệu (6) là:
Phương sai của mẫu số liệu (6) là:
[(271,2 − 272,04)2+ (261 − 272,04)2+ (276 − 272,04)2+ (282 − 272,04)2+ (270 − 272,04)2] = 48,3264.
Vì 9,1584 < 48,3264 nên .
Vậy cự li chạy 500 m có kết quả đồng đều hơn.
Hoạt động 3 trang 39 Toán lớp 10 Tập 2: Trong Ví dụ 2, phương sai của mẫu số liệu (4) là . Tính .
Lời giải:
Ta có: .
Tính độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
Số trung bình cộng của mẫu số liệu trên là:
.
Phương sai của mẫu số liệu trên là:
[(430 − 575)2 + (560 − 575)2 + (450 − 575)2 + (550 − 575)2 + (760 – 575)2 + (430 − 575)2 + (525 – 575)2 + (410 − 575)2 + (635 − 575)2 + (450 − 575)2 + (800 − 575)2 + (900 – 575)2] ≈ 24829,17.
Vậy độ lệch chuẩn của mẫu số liệu trên là: s = .
Bài tập
a) Kết quả trung bình của hai bạn có bằng nhau hay không?
b) Tính phương sai của mẫu số liệu thống kê kết quả 5 lần nhảy xa của mỗi bạn. Từ đó cho biết bạn nào có kết quả nhảy xa ổn định hơn.
Lời giải:
a) Kết quả trung bình của Hùng là:
.
Kết quả trung bình của Trung là:
.
Vậy kết quả trung bình của hai bạn có bằng nhau.
b) Phương sai mẫu số liệu kết quả nhảy xa của bạn Hùng là:
.
Phương sai mẫu số liệu kết quả nhảy xa của bạn Trung là:
.
Vì 0,04 < 0,08 nên .
Vậy bạn Trung có kết quả nhảy xa ổn định hơn.
a) Viết mẫu số liệu thống kê tốc độ tăng trưởng GDP nhận được từ biểu đồ ở Hình 3.
b) Tìm khoảng biến thiên của mẫu số liệu đó.
c) Tìm khoảng tứ phân vị của mẫu số liệu đó.
d) Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
a) Viết mẫu số liệu thống kê giá vàng bán ra nhận được từ biểu đồ ở Hình 4.
b) Tìm khoảng biến thiên của mẫu số liệu đó.
c) Tìm khoảng tứ phân vị của mẫu số liệu đó.
d) Tính phương sai và độ lệch chuẩn của mẫu số liệu đó.
Lời giải:
a) Tính phương sai và độ lệch chuẩn của mẫu số liệu trên.
b) Theo em, các cây có phát triển đồng đều hay không?
Lời giải:
a) Số trung bình cộng của mẫu số liệu đã cho là:
.
Phương sai của mẫu số liệu trên là:
.
Độ lệch chuẩn của mẫu số liệu là:
s = .
b) Vì độ lệch chuẩn của mẫu số liệu là khoảng 5,93, số này khá lớn, chính vì vậy các cây phát triển không đồng đều.
Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Các số đặc trưng đo xu thế trung tâm cho mẫu số liệu không ghép nhóm