Giải Toán 10 Bài 25: Nhị thức Newton
Mở đầu
Mở đầu trang 72 Toán 10 Tập 2: Ở lớp 8, khi học về hằng đẳng thức, ta đã biết khai triển:
(a + b)3 = a3 + 3a2b + 3ab2 + b3.
Lời giải:
+) Ta có: a2 + 2ab + b2 = a2 . b0 + 2 . a1 . b1 + b2 . a0
a3 + 3a2b + 3ab2 + b3 = a3 . b0 + 3 . a2 .b1 + 3 . a1 . b2 + a0 . b3
Quan sát vế phải của các đẳng thức, ta thấy số mũ của a giảm dần từ số mũ của biểu thức vế trái đến 0, còn số mũ của b tăng dần từ 0 đến số mũ của biểu thức ở vế trái.
+) Sau khi học bài Nhị thức Newton này, ta có thể tìm được cách tính các hệ số của đơn thức trong khai triển (a + b)n khi n ∈ {4; 5}.
Hãy lấy tổng của các tích nhận được và so sánh kết quả với khai triển của tích (a + b) . (c + d).
Lời giải:
Quan sát sơ đồ, ta thấy tổng các tích nhận được: a.c + a.d + b.c + b.d.
Khai triển của tích (a + b) . (c + d) = a . (c + d) + b . (c + d) = a.c + a.d + b.c + b.d.
Vậy tổng của các tích nhận được bằng với khai triển của tích (a + b) . (c + d).
Có bao nhiêu tích nhận được lần lượt bằng a3, a2b, ab2, b3?
Hãy so sánh chúng với các hệ số nhận được khi khai triển (a + b)3.
Lời giải:
Theo quy tắc xây dựng sơ đồ hình cây như HĐ1, ta điền được các biểu thức trong sơ đồ hình cây của tích (a + b) . (a + b) . (a + b) như sau:
Quan sát sơ đồ trên ta thấy, có 1 tích bằng a3, có 3 tích bằng a2b, có 3 tích bằng ab2 và có 1 tích bằng b3.
Ở lớp 8, ta đã biết, khai triển (a + b)3 = a3 + 3a2b + 3ab2 + b3.
Vậy hệ số của khai triển đúng bằng hệ số các tích nhận được.
Lập luận tương tự trên, dùng kiến thức về tổ hợp, hãy cho biết trong tổng nêu trên, có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau:
• a4;
• a3b;
• a2b2;
• ab3;
• b4.
Lời giải:
+ Để có đơn thức a4 thì phải có 4 nhân tử a, khi đó số đơn thức đồng dạng với a4 trong tổng là: = 1, hay có 1 đơn thức a4.
+ Để có đơn thức a3b thì phải có 3 nhân tử a, 1 nhân tử b, khi đó số đơn thức đồng dạng với a3b trong tổng là: = 4.
+ Để có đơn thức a2b2 thì phải có 2 nhân tử a, 2 nhân tử b, khi đó số đơn thức đồng dạng với a2b2 trong tổng là: = 6.
+ Để có đơn thức ab3 thì phải có 1 nhân tử a, 3 nhân tử b, khi đó số đơn thức đồng dạng với ab3 trong tổng là: = 4.
+ Để có đơn thức b4 thì phải có 4 nhân tử b, khi đó số đơn thức đồng dạng với b4 trong tổng là: = 1, hay có 1 đơn thức b4.
Luyện tập 1 trang 73 Toán 10 Tập 2: Khai triển (x – 2)4.
Lời giải:
Thay a = x và b = – 2 trong công thức khai triển của (a + b)4, ta được:
(x – 2)4 = x4 + 4x3 .(– 2) + 6x2 . (–2)2 + 4x . (– 2)3 + (– 2)4
= x4 – 8x3 + 24x2 – 32x + 16.
Lập luận tương tự như trên, dùng kiến thức về tổ hợp, hãy cho biết, trong tổng nhận được nêu trên có bao nhiêu đơn thức đồng dạng với mỗi đơn thức thu gọn sau:
• a5;
• a4b;
• a3b2;
• a2b3;
• ab4;
• b5.
Lời giải:
+ Để có đơn thức a5 thì phải có 5 nhân tử a, khi đó số đơn thức đồng dạng với a5 trong tổng là: = 1, hay có 1 đơn thức a5.
+ Để có đơn thức a4b thì phải có 4 nhân tử a, 1 nhân tử b, khi đó số đơn thức đồng dạng với a4b trong tổng là: = 5.
+ Để có đơn thức a3b2 thì phải có 3 nhân tử a, 2 nhân tử b, khi đó số đơn thức đồng dạng với a3b2 trong tổng là: = 10.
+ Để có đơn thức a2b3 thì phải có 2 nhân tử a, 3 nhân tử b, khi đó số đơn thức đồng dạng với a2b3 trong tổng là: = 10.
+ Để có đơn thức ab4 thì phải có 1 nhân tử a, 4 nhân tử b, khi đó số đơn thức đồng dạng với ab4 là: = 5.
+ Để có đơn thức b5 thì phải có 5 nhân tử b, khi đó số đơn thức đồng dạng với b5 trong tổng là: = 1.
Luyện tập 2 trang 74 Toán 10 Tập 2: Khai triển (3x – 2)5.
Lời giải:
Thay a = 3x và b = – 2 trong công thức khai triển của (a + b)5, ta được:
(3x – 2)5
= (3x)5 + 5. (3x)4. (–2) + 10 . (3x)3 . (– 2)2 + 10 . (3x)2 . (– 2)3 + 5 . (3x) . (– 2)4 + (– 2)5
= 243x5 – 810x4 + 1080x3 – 720x2 + 240x – 32.
Lời giải:
a) Khai triển: (1 + 0,05)4 = 14 + 4 . 13 . 0,05 + 6 . 12 . 0,052 + 4 . 1 . 0,053 + 0,054.
1,054 ≈ 14 + 4 . 13 . 0,05 = 1 + 0,2 = 1,2.
Vậy giá trị gần đúng của khai triển 1,054là 1,2.
b) Sử dụng máy tính cầm tay, ta tính được: 1,054 ≈ 1,21550625
Ta có: ∆ ≈ |1,21550625 – 1,2| = 0,01550625 < 0,02
Sai số tuyệt đối là 0,02.
Bài tập
Bài 8.12 trang 74 Toán 10 Tập 2: Khai triển các đa thức:
Lời giải:
Áp dụng các công thức khai triển của (a + b)4 và (a + b)5, ta như sau:
a) (x – 3)4 = x4 + 4 . x3 . (–3) + 6 . x2 . (–3)2 + 4 . x . (–3)3 + (–3)4
= x4 –12x3 + 54x2 – 108x + 81.
b) (3x – 2y)4 = (3x)4 + 4 . (3x)3 . (– 2y) + 6 . (3x)2 . (– 2y)2 + 4 . (3x) . (– 2y)3 + (– 2y)4
= 81x4 – 216x3y + 216x2y2 – 96xy3 + 16y4.
c) (x + 5)4 + (x – 5)4
= (x4 + 4x3. 5 + 6x2 . 52 + 4x . 53 + 54) + [x4 + 4x3 . (– 5) + 6x2 . (– 5)2 + 4x . (– 5)3 + (– 5)4]
= (x4 + x4) + (20x3 – 20x3) + (150x2 + 150x2) + (500x – 500x) + (625 + 625)
= 2x4 + 300x2 + 1250.
d) (x – 2y)5 = x5 + 5x4 . (– 2y) + 10x3 . (– 2y)2 + 10x2 . (– 2y)3 + 5x . (2y)4 + (– 2y)5
= x5 – 10x4y + 40x3y2 – 80x2y3 + 80xy4 – 32y5.
Bài 8.13 trang 74 Toán 10 Tập 2: Tìm hệ số của x4 trong khai triển của (3x –1)5.
Lời giải:
Số hạng chứa x4 là: 5 . (3x)4 . (– 1) = – 405x4.
Vậy hệ số của x4 trong khai triển của (3x – 1)5 là: – 405.
Bài 8.14 trang 74 Toán 10 Tập 2: Biểu diễn dưới dạng với a, b là các số nguyên.
Lời giải:
Ta có:
Suy ra:
.
Vậy biểu diễn dưới dạng với a, b là các số nguyên ta được .
Lời giải:
a) Ta có khai triển:
(1 + 0,02)5 = 15 + 5 . 14 . (0,02) + 10 . 13 . (0,02)2 + 10 . 12 . (0,02)3 + 5 . 1 . (0,02)4 + (0,02)5
Do đó: 1,025 = (1 + 0,02)5 ≈ 15 + 5 . 14 . 0,02 = 1,1.
b) Sử dụng máy tính cầm tay ta tính được: 1,025 ≈ 1,104080803
Ta có: ∆ ≈ |1,104080803 – 1,1| = 0,004080803 < 0,005
Sai số tuyệt đối là 0,005.
Lời giải:
a) Để tính số dân năm sau, ta lấy số dân năm trước cộng với số dân tăng hằng năm (Số dân tăng hằng năm là r% của số dân năm trước).
Số dân của tỉnh đó sau 1 năm là:
(nghìn người).
Số dân của tỉnh đó sau 2 năm là:
(nghìn người).
Do đó, công thức tính số dân của tỉnh đó sau 5 năm nữa là: (nghìn người).
b) Với r = 1,5, suy ra .
Ta có khai triển:
(1 + 0,015)5 = 15 + 5 . 14 . 0,015 + 10 . 13 . (0,015)2 + 10 . 12. (0,015)3 + 5 . 1 . (0,015)4 + (0,015)5.
Do đó: (1 + 0,015)5 ≈ 15 + 5 . 14 . 0,015 = 1,075.
Số dân của tỉnh đó sau 5 năm nữa là:
P5 = 800 . (1 + 0,015)5≈ 800 . 1,075 = 860 (nghìn người)
Vậy số dân của tỉnh đó sau 5 năm nữa xấp xỉ khoảng 860 nghìn người.
Xem thêm lời giải bài tập SGK Toán lớp 10 Kết nối tri thức hay, chi tiết khác:
Bài tập cuối chương 8 trang 76
Bài 26: Biến cố và định nghĩa cổ điển của xác suất
Bài 27: Thực hành tính xác suất theo định nghĩa cổ điển