Câu hỏi:
18/12/2023 91
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: 3x - 2y - 6 = 0 và \[{d_2}\]: 6x - 2y - 8 = 0
A. Trùng nhau.
A. Trùng nhau.
B. Song song.
B. Song song.
C. Vuông góc với nhau.
C. Vuông góc với nhau.
D. Cắt nhau nhưng không vuông góc nhau.
D. Cắt nhau nhưng không vuông góc nhau.
Trả lời:
Đáp án đúng là: D
Ta có: \[\left\{ \begin{array}{l}{d_1}:3x - 2y - 6 = 0\\{d_2}:6x - 2y - 8 = 0\end{array} \right.\]
Giải hệ phương trình: \[\left\{ \begin{array}{l}3x - 2y - 6 = 0\\6x - 2y - 8 = 0\end{array} \right.\] \[ \Leftrightarrow \]\[ \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\3x = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{2}{3}\\y = - 2\end{array} \right.\]
Suy ra hai đường thẳng cắt nhau tại 1 điểm.
Ta lại có: d1 có VTPT \(\overrightarrow {{n_1}} \) = (3; -2) và d2 có VTPT \(\overrightarrow {{n_2}} \)= (6; -2).
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} \) = 3.6 + (-3).(-2) = 18 + 6 = 24 ≠ 0. Do đó d1 và d2 không vuông góc.
Vậy hai đường thẳng cắt nhau nhưng không vuông góc.
Đáp án đúng là: D
Ta có: \[\left\{ \begin{array}{l}{d_1}:3x - 2y - 6 = 0\\{d_2}:6x - 2y - 8 = 0\end{array} \right.\]
Giải hệ phương trình: \[\left\{ \begin{array}{l}3x - 2y - 6 = 0\\6x - 2y - 8 = 0\end{array} \right.\] \[ \Leftrightarrow \]\[ \Leftrightarrow \left\{ \begin{array}{l}3x - 2y = 6\\3x = 2\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}x = \frac{2}{3}\\y = - 2\end{array} \right.\]
Suy ra hai đường thẳng cắt nhau tại 1 điểm.
Ta lại có: d1 có VTPT \(\overrightarrow {{n_1}} \) = (3; -2) và d2 có VTPT \(\overrightarrow {{n_2}} \)= (6; -2).
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} \) = 3.6 + (-3).(-2) = 18 + 6 = 24 ≠ 0. Do đó d1 và d2 không vuông góc.
Vậy hai đường thẳng cắt nhau nhưng không vuông góc.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2); B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2); B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng:
Câu 2:
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(3; -4); B(1; 5) và C(3; 1). Tính diện tích tam giác ABC.
Câu 3:
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Trong mặt phẳng với hệ tọa độ Oxy, cho điểm \(M\left( {{x_0};{y_0}} \right)\) và đường thẳng \(\Delta \): ax + by + c = 0. Khoảng cách từ điểm M đến \(\Delta \) được tính bằng công thức:
Câu 4:
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Khoảng cách từ điểm M(-1; 1) đến đường thẳng \[\Delta \]: 3x – 4y – 3 = 0 bằng:
Câu 5:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}\]: x – 2y + 1 = 0 và \[{d_2}\]: – 3x + 6y – 10 = 0
Câu 6:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 4t'\end{array} \right.\].
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}:\left\{ \begin{array}{l}x = - 1 + t\\y = - 2 - 2t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 4t'\end{array} \right.\].
Câu 7:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng:
Khoảng cách từ giao điểm của đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng ∆: 3x + y + 4 = 0 bằng:
Câu 8:
Góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x - 3y + 6 = 0 và \[{d_2}\]: 2x - 5y có giá trị?
Góc tạo bởi giữa hai đường thẳng \[{d_1}\]: 7x - 3y + 6 = 0 và \[{d_2}\]: 2x - 5y có giá trị?
Câu 9:
Đáp án nào đúng, góc giữa hai đường thẳng sau:
\({d_1}:2x + 2\sqrt 3 y + 5 = 0\)và \({d_2}\): y - 6 = 0
Câu 10:
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 2t'\end{array} \right.\].
Xét vị trí tương đối của hai đường thẳng:
\[{d_1}:\left\{ \begin{array}{l}x = - 3 + 4t\\y = 2 - 4t\end{array} \right.\] và \[{d_2}:\left\{ \begin{array}{l}x = 2 - 2t'\\y = - 8 + 2t'\end{array} \right.\].
Câu 11:
Tính góc tạo bởi giữa hai đường thẳng:
\[{d_1}\]: 2x - y - 10 = 0 và \[{d_2}\]: x - 3y + 9 = 0
Tính góc tạo bởi giữa hai đường thẳng:
\[{d_1}\]: 2x - y - 10 = 0 và \[{d_2}\]: x - 3y + 9 = 0
Câu 12:
Tìm giá trị góc giữa hai đường thẳng sau:
\({d_1}\): 6x - 5y + 15 = 0 và \({d_2}:\left\{ \begin{array}{l}x = 10 - 6t\\y = 1 + 5t\end{array} \right.\)
Câu 13:
Xét vị trí tương đối của hai đường thẳng \[{d_1}:\frac{x}{3} - \frac{y}{4} = 1\] và \[{d_2}\]: 3x + 4y - 10 = 0.
Xét vị trí tương đối của hai đường thẳng \[{d_1}:\frac{x}{3} - \frac{y}{4} = 1\] và \[{d_2}\]: 3x + 4y - 10 = 0.
Câu 14:
Góc nào tạo bởi giữa hai đường thẳng: \({d_1}:x + \sqrt 3 y = 0\) và \({d_2}\): x + 10 = 0 .