Xét các số phức z thỏa mãn (z-2i)(x+2) là số thuần ảo.
Xét các số phức z thỏa mãn là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng:
Xét các số phức z thỏa mãn là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức z là một đường tròn có bán kính bằng:
Gọi số phức
Ta có:
Û w = [x − (y + 2)i](x + 2 + yi)
Û w = x(x + 2) + y(y + 2) + [xy − (x + 2)(y + 2)]i
Vì w là số phức thuần ảo suy ra x(x + 2) + y(y + 2) = 0
Û x2 + 2x + y2 + 2y = 0
Û (x2 + 2x + 1) + (y2 + 2y + 1) = 2
Û (x + 1)2 + (y + 1)2 = 2
Vậy đường tròn biểu diễn số phức z có bán kính .