Với mỗi số nguyên dương n, lấy n + 6 điểm cách đều nhau trên đường tròn. Nối mỗi
37
04/08/2024
Với mỗi số nguyên dương n, lấy n + 6 điểm cách đều nhau trên đường tròn. Nối mỗi điểm với điểm cách nó hai điểm trên đường tròn đó để tạo thành các ngôi sao như Hình 1. Gọi un là số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao thì ta được dãy số (un). Tìm công thức của số hạng tổng quát un.
Trả lời
Ta thấy đường tròn được chia thành n + 6 cung bằng nhau và mỗi cung có số đo bằng \(\left( {\frac{{360}}{{n + 6}}} \right)\begin{array}{*{20}{c}}^\circ \\{}\end{array}\). Do mỗi điểm được nối với điểm cách nó hai điểm trên đường tròn nên góc ở đỉnh của mỗi ngôi sao là góc nội tiếp chắn n + 6 – 2 . 3 = n cung bằng nhau đó. Suy ra số đo góc ở đỉnh tính theo đơn vị độ của mỗi ngôi sao là \({u_n} = \frac{1}{2}.\frac{{360}}{{n + 6}}.n = \frac{{180n}}{{n + 6}}\).