Câu hỏi:
10/04/2024 42
Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \[{a^3} + {b^3} + {c^3} - 3abc\] là
A. 0.
B. 1.
C. −3abc.
D. \[{a^3} + {b^3} + {c^3}\]
Trả lời:
Lời giải
Đáp án đúng là: A
\[{a^3} + {b^3} + {c^3} - 3abc\]
\( = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} - 3abc\)
\( = {\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b + c} \right)\)
\( = \left( {a + b + c} \right)\left[ {{{\left( {a + b} \right)}^2} - \left( {a + b} \right)c + {c^3}} \right] - 3ab\left( {a + b + c} \right)\)
\( = \left( {a + b + c} \right)\left( {{a^2} + 2ab + {b^2} - ac - bc + {c^2} - 3ab} \right)\)
\( = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - ac - bc} \right)\)
Vì \(a + b + c = 0\) nên \({a^3} + {b^3} + {c^3} - 3abc = 0\).
Như vậy, với a + b + c = 0, ta có: \({a^3} + {b^3} + {c^3} = 3abc\).
Lời giải
Đáp án đúng là: A
\[{a^3} + {b^3} + {c^3} - 3abc\]
\( = {\left( {a + b} \right)^3} - 3ab\left( {a + b} \right) + {c^3} - 3abc\)
\( = {\left( {a + b} \right)^3} + {c^3} - 3ab\left( {a + b + c} \right)\)
\( = \left( {a + b + c} \right)\left[ {{{\left( {a + b} \right)}^2} - \left( {a + b} \right)c + {c^3}} \right] - 3ab\left( {a + b + c} \right)\)
\( = \left( {a + b + c} \right)\left( {{a^2} + 2ab + {b^2} - ac - bc + {c^2} - 3ab} \right)\)
\( = \left( {a + b + c} \right)\left( {{a^2} + {b^2} + {c^2} - ab - ac - bc} \right)\)
Vì \(a + b + c = 0\) nên \({a^3} + {b^3} + {c^3} - 3abc = 0\).
Như vậy, với a + b + c = 0, ta có: \({a^3} + {b^3} + {c^3} = 3abc\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \({\left( {3x - 1} \right)^2} + 2{\left( {x + 3} \right)^2} + 11\left( {1 + x} \right)\left( {1 - x} \right){\rm{ = ax}} + b\). Khi đó
Câu 2:
Cho biểu thức\[{\rm{T = }}{{\rm{x}}^{\rm{2}}}{\rm{ + 20x + 101}}\]. Khi đó
Câu 3:
Rút gọn biểu thức \[P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\] ta được
Câu 5:
Cho biểu thức \(N = 2{\left( {x - 1} \right)^3} - 4{\left( {3 + x} \right)^2} + 2x\left( {x + 14} \right)\). Giá trị của biểu thức N khi x = 1001 là
Câu 6:
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.