Câu hỏi:
10/04/2024 34
Cho biết \({\left( {3x - 1} \right)^2} + 2{\left( {x + 3} \right)^2} + 11\left( {1 + x} \right)\left( {1 - x} \right){\rm{ = ax}} + b\). Khi đó
A. a = 30; b = 6
B. a = – 6; b = –30
C. a = 6; b = 30
Đáp án chính xác
D. a = –30; b = –6
Trả lời:
Giải bởi Vietjack
Lời giải
Đáp án đúng là: C
Ta có \({\left( {3x - 1} \right)^2} + 2{\left( {x + 3} \right)^2} + 11\left( {1 + x} \right)\left( {1 - x} \right)\)
\( = {\left( {3x} \right)^2} - 2.3x.1 + {1^2} + 2\left( {{x^2} + 6x + 9} \right) + 11\left( {1 - {x^2}} \right)\)
\( = 9{x^2} - 6x + 1 + 2{x^2} + 12x + 18 + 11 - 11{x^2}\)
\( = \left( {9{x^2} + 2{x^2} - 11{x^2}} \right) + \left( { - 6x + 12x} \right) + \left( {1 + 18 + 11} \right)\)
\( = 6x + 30\)
Do đó \(a = 6;\,\,b = 30\).
Lời giải
Đáp án đúng là: C
Ta có \({\left( {3x - 1} \right)^2} + 2{\left( {x + 3} \right)^2} + 11\left( {1 + x} \right)\left( {1 - x} \right)\)
\( = {\left( {3x} \right)^2} - 2.3x.1 + {1^2} + 2\left( {{x^2} + 6x + 9} \right) + 11\left( {1 - {x^2}} \right)\)
\( = 9{x^2} - 6x + 1 + 2{x^2} + 12x + 18 + 11 - 11{x^2}\)
\( = \left( {9{x^2} + 2{x^2} - 11{x^2}} \right) + \left( { - 6x + 12x} \right) + \left( {1 + 18 + 11} \right)\)
\( = 6x + 30\)
Do đó \(a = 6;\,\,b = 30\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biểu thức\[{\rm{T = }}{{\rm{x}}^{\rm{2}}}{\rm{ + 20x + 101}}\]. Khi đó
Xem đáp án »
10/04/2024
36
Câu 2:
Rút gọn biểu thức \[P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\] ta được
Xem đáp án »
10/04/2024
34
Câu 3:
Cho biểu thức \(N = 2{\left( {x - 1} \right)^3} - 4{\left( {3 + x} \right)^2} + 2x\left( {x + 14} \right)\). Giá trị của biểu thức N khi x = 1001 là
Xem đáp án »
10/04/2024
33
Câu 4:
Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là
Xem đáp án »
10/04/2024
32
Câu 5:
Với mọi a, b, c thỏa mãn a + b + c = 0 thì giá trị của biểu thức \[{a^3} + {b^3} + {c^3} - 3abc\] là
Xem đáp án »
10/04/2024
32
Câu 7:
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.
Xem đáp án »
10/04/2024
31
Câu 8:
Cho cặp số (x; y) để biểu thức\(P = {x^2} - 8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng x + 2y bằng
Xem đáp án »
10/04/2024
31
Câu 10:
Tìm x, biết: \(\left( {x - 6} \right)\left( {x + 6} \right) - {\left( {x + 3} \right)^2} = 9\).
Xem đáp án »
10/04/2024
30
Câu 11:
Tính giá trị của biểu thức\(M = {\left( {x + 2y} \right)^3} - 6{\left( {x + 2y} \right)^2} + 12\left( {x + 2y} \right) - 8\)tại x = 20, y = 1.
Xem đáp án »
10/04/2024
29
Câu 12:
Rút gọn biểu thức:\(P = 8{x^3} - 12{x^2}y + 6x{y^2} - {y^3} + 12{x^2} - 12xy + 3{y^2} + 6x - 3y + 11\), ta được
Xem đáp án »
10/04/2024
29
Câu 13:
Cho biết\[{\rm{Q}} = {\left( {2{\rm{x}} - 1} \right)^3}\; - 8{\rm{x}}\left( {{\rm{x}} + 1} \right)\left( {{\rm{x}} - 1} \right) + 2{\rm{x}}\left( {6{\rm{x}} - 5} \right) = {\rm{ax}} - {\rm{b}}\,\,\left( {{\rm{a}}{\rm{,}}\,{\rm{b}} \in \mathbb{Z}} \right)\]. Khi đó
Xem đáp án »
10/04/2024
29
Câu 14:
Cho biết \[{\rm{9}}{{\rm{9}}^{\rm{2}}}{\rm{ = }}{{\rm{a}}^{\rm{2}}} - {\rm{2ab + }}{{\rm{b}}^{\rm{2}}}\] với \(a,b \in \mathbb{R}\). Khi đó
Xem đáp án »
10/04/2024
27