Câu hỏi:
10/04/2024 33
Cho cặp số (x; y) để biểu thức\(P = {x^2} - 8x + {y^2} + 2y + 5\) có giá trị nhỏ nhất. Khi đó tổng x + 2y bằng
A. 1
B. 0
C. 2
D. 4
Trả lời:
Lời giải
Đáp án đúng là: C
Ta có \(P = {x^2} - 8x + {y^2} + 2y + 5\)
\( = \left( {{x^2} - 8x + 16} \right) + \left( {{y^2} + 2y + 1} \right) - 12\)
\( = {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} - 12\)
Vì \({\left( {x - 4} \right)^2} \ge 0\,\,\forall x \in \mathbb{R};\,\,{\left( {y + 1} \right)^2} \ge 0\,\,\forall y \in \mathbb{R}\)
Nên \({\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} - 12 \ge - 12\,\,\forall x,\,\,y \in \mathbb{R}\)
Dấu “=” xảy ra khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{x - 4 = 0}\\{y + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 4}\\{y = - 1}\end{array}} \right.\)
Do đó giá trị nhỏ nhất của biểu thức P là −12 khi và chỉ khi x = 4; y = – 1.
Khi đó x + 2y = 4 + 2.( –1) = 2.
Lời giải
Đáp án đúng là: C
Ta có \(P = {x^2} - 8x + {y^2} + 2y + 5\)
\( = \left( {{x^2} - 8x + 16} \right) + \left( {{y^2} + 2y + 1} \right) - 12\)
\( = {\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} - 12\)
Vì \({\left( {x - 4} \right)^2} \ge 0\,\,\forall x \in \mathbb{R};\,\,{\left( {y + 1} \right)^2} \ge 0\,\,\forall y \in \mathbb{R}\)
Nên \({\left( {x - 4} \right)^2} + {\left( {y + 1} \right)^2} - 12 \ge - 12\,\,\forall x,\,\,y \in \mathbb{R}\)
Dấu “=” xảy ra khi và chỉ khi \(\left\{ {\begin{array}{*{20}{c}}{x - 4 = 0}\\{y + 1 = 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 4}\\{y = - 1}\end{array}} \right.\)
Do đó giá trị nhỏ nhất của biểu thức P là −12 khi và chỉ khi x = 4; y = – 1.
Khi đó x + 2y = 4 + 2.( –1) = 2.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho biết \({\left( {3x - 1} \right)^2} + 2{\left( {x + 3} \right)^2} + 11\left( {1 + x} \right)\left( {1 - x} \right){\rm{ = ax}} + b\). Khi đó
Câu 2:
Cho biểu thức\[{\rm{T = }}{{\rm{x}}^{\rm{2}}}{\rm{ + 20x + 101}}\]. Khi đó
Câu 3:
Rút gọn biểu thức \[P = {\left( {3x - 1} \right)^2} - 9x\left( {x + 1} \right)\] ta được
Câu 4:
Cho biểu thức \(N = 2{\left( {x - 1} \right)^3} - 4{\left( {3 + x} \right)^2} + 2x\left( {x + 14} \right)\). Giá trị của biểu thức N khi x = 1001 là
Câu 5:
Biểu thức \(4{x^2} - 4x + 1\) được viết dưới dạng hằng đẳng thức bình phương của một hiệu là
Câu 6:
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.
Cho hai biểu thức:
\(P = {\left( {4x + 1} \right)^3} - \left( {4x + 3} \right)\left( {16{x^2} + 3} \right)\);
\(Q = {\left( {x - 2} \right)^3} - x\left( {x + 1} \right)\left( {x - 1} \right) + 6x\left( {x - 3} \right) + 5x\).
Tìm mối quan hệ giữa hai biểu thức P, Q.