Với các số thực dương a, b, c chứng minh rằng: a^3 + b^3 + c^3 > = ab^2 + bc^2 + ca^2
Với các số thực dương a, b, c chứng minh rằng: a3 + b3 + c3 ≥ ab2 + bc2 + ca2.
Áp dụng bất đẳng thức Cô – si ta có:
a3 + b3 + b3 ≥ 3ab2
b3 + c3 + c3 ≥ 3bc2
a3 + a3 + c3 ≥ 3ca2
Cộng vế với vế của các bất đẳng thức trên ta được
3(a3 + b3 + c3) ≥ 3(ab2 + bc2 + ca2)
⇔ a3 + b3 + c3 ≥ ab2 + bc2 + ca2
Dấu “=” xảy ra khi a = b = c
Vậy a3 + b3 + c3 ≥ ab2 + bc2 + ca2.