Với các chữ số 0, 2, 3, 5, 6, 7, 9. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 3 lần, chữ số 6 có mặt đúng 2 lần và các chữ số khác, mỗi chữ số có mặt đúng 1 lần?

Với các chữ số 0, 2, 3, 5, 6, 7, 9. Lập được bao nhiêu số có 10 chữ số mà trong mỗi số chữ số 5 có mặt đúng 3 lần, chữ số 6 có mặt đúng 2 lần và các chữ số khác, mỗi chữ số có mặt đúng 1 lần?

Trả lời

Số các số có thể có bằng số hoán vị của 10 chữ số của , trong đó chữ số 5 lặp lại 3 lần, chữ số 6 lặp lại 2 lần   10!3!  .2!.

Số các số có dạng bằng hoán vị của 9 chữ số trong đó chữ số 5 lặp lại 3 lần, chữ số 6 lặp lại 2 lần  9!3!  .2!.

Do đó, số các số phải tìm là:  10!3!  .2!9!3!  .2!=272  160 (số)

Vậy có 272 160 số thỏa yêu cầu đề bài.

Câu hỏi cùng chủ đề

Xem tất cả